Previous |  Up |  Next

Article

MSC: 35J30, 35J60, 35J92
Keywords:
$p$-Laplacian; Dirichlet problem; critical exponent.
Summary:
In this work, by using the Mountain Pass Theorem, we give a result on the existence of solutions concerning a class of nonlocal $p$-Laplacian Dirichlet problems with a critical nonlinearity and small perturbation.
References:
[1] Alves, C.O., Corrêa, F.J.S.A., Figueiredo, G.M.: On a class of nonlocal elliptic problems with critical growth. Differential Equation and Applications, 2, 2010, 409-417, DOI 10.7153/dea-02-25 | MR 2731312 | Zbl 1198.35281
[2] Azorero, J.G., Alonso, I.P.: Multiplicity of solutions for elliptic problems with critical exponent or with a nonsymmetric term. Trans. Amer. Math. Soc., 323, 2, 1991, 877-895, DOI 10.2307/2001562 | MR 1083144 | Zbl 0729.35051
[3] Hamidi, A. El, Rakotoson, J.M.: Compactness and quasilinear problems with critical exponents. Differ. Integral Equ., 18, 2005, 1201-1220, MR 2174817 | Zbl 1212.35113
[4] Figueiredo, M. G.: Existence of a positive solution for a Kirchhoff problem type with critical growth via truncation argument. J. Math. Anal. Appl., 401, 2013, 706-713, DOI 10.1016/j.jmaa.2012.12.053 | MR 3018020 | Zbl 1307.35110
[5] Figueiredo, G. M., Santos, Jefferson A.: On a $\Phi $-Kirchhoff multivalued problem with critical growth in an Orlicz-Sobolev space. Asymptotic Analysis, 89, 1, 2014, 151-172, MR 3251917 | Zbl 1304.35254
[6] Fiscella, A., Valdinoci, E.: A critical Kirchhoff type problem involving a nonlocal operator. Nonlinear Anal., 94, 2014, 156-170, DOI 10.1016/j.na.2013.08.011 | MR 3120682 | Zbl 1283.35156
[7] Fukagai, N., Narukawa, K.: Positive solutions of quasilinear elliptic equations with critical Orlicz–Sobolev nonlinearity on RN. Funkciallaj Ekvacioj, 49, 1981, 235-267, DOI 10.1619/fesi.49.235 | MR 2271234
[8] Lions, P. L.: The concentraction-compactness principle in the calculus of virations. The limit case, Part 1. Rev Mat Iberoamericana, 1, 1985, 145-201, DOI 10.4171/RMI/6 | MR 0834360
[9] Ourraoui, A.: On a $p$-Kirchhoff problem involving a critical nonlinearity. C. R. Acad. Sci. Paris, 352, 2014, 295-298, DOI 10.1016/j.crma.2014.01.015 | MR 3186916 | Zbl 1298.35096
[10] Pucci, P.: Geometric description of the mountain pass critical points. Contemporary Mathematicians, 2, 2014, 469-471.
[11] Pucci, P., Saldi, S.: Critical stationary Kirchhoff equations in $R^N$ involving nonlocal operators. Rev. Mat. Iberoam., 2014,
[12] Willem, M.: Minimax Theorems. 1996, Springer, MR 1400007 | Zbl 0856.49001
Partner of
EuDML logo