Previous |  Up |  Next

Article

Title: The gap theorems for some extremal submanifolds in a unit sphere (English)
Author: Wu, Xi Guo and Lan
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 23
Issue: 1
Year: 2015
Pages: 85-93
Summary lang: English
.
Category: math
.
Summary: Let $M$ be an $n$-dimensional submanifold in the unit sphere $S^{n+p}$, we call $M$ a $k$-extremal submanifold if it is a critical point of the functional $\int _M\rho ^{2k}\,\mathrm{d}v $. In this paper, we can study gap phenomenon for these submanifolds. (English)
Keyword: Extremal functional
Keyword: Mean curvature
Keyword: Totally umbilical
MSC: 53C24
MSC: 53C40
idZBL: Zbl 1342.53077
idMR: MR3394079
.
Date available: 2015-08-25T14:01:07Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/144360
.
Reference: [1] Guo, Z., Li, H.: A variational problem for submanifolds in a sphere.Monatsh. Math., 152, 2007, 295-302, Zbl 1186.53066, MR 2358299, 10.1007/s00605-007-0476-2
Reference: [2] Hoffman, D., Spruck, J.: Sobolev and isoperimetric inequalities for Riemannian submanifolds.Comm. Pure. Appl. Math., 27, 1974, 715-727, Zbl 0295.53025, MR 0365424, 10.1002/cpa.3160270601
Reference: [3] Kenmotsu, K.: Some remarks on minimal submanifolds.Tohoku. Math. J., 22, 1970, 240-248, Zbl 0202.21003, MR 0268791, 10.2748/tmj/1178242819
Reference: [4] Li, A.-M., Li., J.-M.: An intrinsic rigidity theorem for minimal submanifolds in a sphere.Arch. Math., 58, 1992, 582-594, MR 1161925, 10.1007/BF01193528
Reference: [5] Li., H.: Willmore hypersurfaces in a sphere.Asian. J. Math., 5, 2001, 365-378, MR 1868938, 10.4310/AJM.2001.v5.n2.a4
Reference: [6] Li., H.: Willmore submanifolds in a sphere.Math. Res. Letters, 9, 2002, 771-790, MR 1906077, 10.4310/MRL.2002.v9.n6.a6
Reference: [7] Simons., J.: Minimal varieties in Riemannian manifolds.Ann. of Math., 88, 1968, 62-105, MR 0233295, 10.2307/1970556
Reference: [8] Xu, H.-W., Yang., D.: The gap phenomenon for extremal submanifolds in a Sphere.Differential Geom and its Applications, 29, 2011, 26-34, MR 2784286
Reference: [9] Wu., L.: A class of variational problems for submanifolds in a space form.Houston J. Math., 35, 2009, 435-450, MR 2519540
.

Files

Files Size Format View
ActaOstrav_23-2015-1_6.pdf 406.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo