Previous |  Up |  Next

Article

Title: Modeling biased information seeking with second order probability distributions (English)
Author: Kleiter, Gernot D.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 3
Year: 2015
Pages: 469-485
Summary lang: English
.
Category: math
.
Summary: Updating probabilities by information from only one hypothesis and thereby ignoring alternative hypotheses, is not only biased but leads to progressively imprecise conclusions. In psychology this phenomenon was studied in experiments with the “pseudodiagnosticity task”. In probability logic the phenomenon that additional premises increase the imprecision of a conclusion is known as “degradation”. The present contribution investigates degradation in the context of second order probability distributions. It uses beta distributions as marginals and copulae together with C-vines to represent dependence structures. It demonstrates that in Bayes' theorem the posterior distributions of the lower and upper probabilities approach 0 and 1 as more and more likelihoods belonging to only one hypothesis are included in the analysis. (English)
Keyword: probability logic
Keyword: Bayes' theorem
Keyword: degradation
Keyword: pseudodiagnosticity task
Keyword: second order probability distributions
MSC: 03B48
MSC: 49N30
MSC: 62F15
MSC: 62H05
MSC: 68T30
MSC: 68T35
MSC: 91E10
idZBL: Zbl 06487091
idMR: MR3391680
DOI: 10.14736/kyb-2015-3-0469
.
Date available: 2015-09-01T09:15:08Z
Last updated: 2016-01-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144381
.
Reference: [1] Boole, G.: An Investigation of the Laws of Thought..Macmillan/Dover Publication, New York 1854/1958. Zbl 1205.03003, MR 1802120
Reference: [2] Coletti, G., Petturiti, D., Vantaggi, B.: Bayesian inference: the role of coherence to deal with a prior belief function..Statist. Methods Appl., online, 2014. MR 3278926
Reference: [3] Coletti, G., Scozzafava, R.: Probabilistic Logic in a Coherent Setting..Kluwer, Dordrecht 2002. Zbl 1040.03017, MR 2042026
Reference: [4] Doherty, M. E., Mynatt, C. R., Tweney, R. D., Schiavo, M. D.: Pseudodiagnosticity..Acta Psychologica 43 (1979), 111-121. MR 1872198, 10.1016/0001-6918(79)90017-9
Reference: [5] Gilio, A.: Generalization of inference rules in coherence-based probabilistic default reasoning..Int. J. Approx. Reasoning 53 (2012), 413-434. MR 2902403, 10.1016/j.ijar.2011.08.004
Reference: [6] Hanea, A.: Dependence modeling. Vine copula handbook..In: Dependence Modeling. Vine Copula Handbook (D. Kurowicka and H. Joe, eds.), chapter Non-parametric Bayesian belief nets versus vines, World Scientific, New Jersey 2011, pp. 281-303. MR 2856979, 10.1142/9789814299886_0014
Reference: [7] Joe, H.: Dependence Modeling with Copulas..Chapman and Hall/CRC, Boca Raton 2015. MR 3328438
Reference: [8] Kern, L., Doherty, M. E.: “Pseudodiagnosticity” in an idealized medical problem-solving environment..J. Medical Education 57 (1982), 100-104.
Reference: [9] Kleiter, G. D.: Propagating imprecise probabilities in Bayesian networks..Artificial Intelligence 88 (1996), 143-161. Zbl 0906.68114, 10.1016/s0004-3702(96)00021-5
Reference: [10] Kleiter, G. D.: Ockham's razor in probability logic..In: Synergies of Soft Computing and Statistics for Intelligent Data Analysis (R. Kruse, M.xQ,R. Berthold, C. Moewes, M. A. Gil, P. Grzegorzewski, and O. Hryniewicz, eds.), Advances in Intelligent Systems and Computation 190, Springer, Heidelberg 2012. pp. 409-417. 10.1007/978-3-642-33042-1_44
Reference: [11] Kurowicka, D., Cooke, R.: Distribution-free continuous Bayesian belief nets..In: Proc. Fourth International Conference on Mathematical Methods in Reliability Methodology and Practice, Santa Fe 2004. Zbl 1083.62054, MR 2230715
Reference: [12] Kurowicka, D., Cooke, R.: Uncertainty Analysis with High Dimension Dependence Modelling..Wiley, Chichester, 2006. MR 2216540
Reference: [13] Kurowicka, D., Joe, R.: Dependence Modeling: Vine Copula Handbook..World Scientific, Singapure 2011. MR 2849701
Reference: [14] Mai, J.-F., Scherer, M.: Simulating Copulas. Stochastic Models, Sampling Algorithms, and Applications..Imperial College Press, London 2012. Zbl 1301.65001, MR 2906392
Reference: [15] Nelsen, R. B.: An introduction to Copulas..Springer, Berlin 2006. Zbl 1152.62030, MR 2197664
Reference: [16] Team, R Development Core, Vienna, Austria: R: A Language and Environment for Statistical Computing, 2014..
Reference: [17] Schepsmeier, U., Stoeber, J., Brechmann, E. C., Graeler, B.: Statistical inference of vine copulas..Version 1.2 edition, 2013.
Reference: [18] Seidenfeld, T., Wasserman, L.: Dilation for sets of probabilities..Ann. Statist. 21 (1993), 1139-1154. Zbl 0796.62005, MR 1241261, 10.1214/aos/1176349254
Reference: [19] Tweney, R. D., Doherty, M. E., Kleiter, G. D.: The pseudodiagnosticity trap. Should subjects consider alternative hypotheses?.Thinking and Reasoning 16 (2010), 332-345. 10.1080/13546783.2010.525860
Reference: [20] Wallmann, C., Kleiter, G. D.: Exchangeability in probability logic..In: Communications in Computer and Information Science (S. Greco, B. Bouchon-Meunier, G. Coletti, M. Fedrizzi, B. Matarazzo, and R. R. Yager, eds.), IPMU (4) 300, Springer, Berlin 2012, pp. 157-167. Zbl 1252.03043, 10.1007/978-3-642-31724-8_17
Reference: [21] Wallmann, C., Kleiter, G. D.: Degradation in probability logic: When more information leads to less precise conclusions..Kybernetika 50 (2014), 268-283. Zbl 1296.03018, MR 3216994, 10.14736/kyb-2014-2-0268
Reference: [22] Wallmann, C., Kleiter, G. D.: Probability propagation in generalized inference forms..Studia Logica 102 (2014), 913-929. MR 3249556, 10.1007/s11225-013-9513-4
Reference: [23] Wasserman, L. A.: Prior envelopes based on belief functions..Annals Statist. 18 (1990), 454-464. Zbl 0711.62001, MR 1041404, 10.1214/aos/1176347511
.

Files

Files Size Format View
Kybernetika_51-2015-3_7.pdf 520.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo