Previous |  Up |  Next

Article

Title: Analytic enclosure of the fundamental matrix solution (English)
Author: Castelli, Roberto
Author: Lessard, Jean-Philippe
Author: Mireles James, Jason D.
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 60
Issue: 6
Year: 2015
Pages: 617-636
Summary lang: English
.
Category: math
.
Summary: This work describes a method to rigorously compute the real Floquet normal form decomposition of the fundamental matrix solution of a system of linear ODEs having periodic coefficients. The Floquet normal form is validated in the space of analytic functions. The technique combines analytical estimates and rigorous numerical computations and no rigorous integration is needed. An application to the theory of dynamical system is presented, together with a comparison with the results obtained by computing the enclosure in the $C^s$ category. (English)
Keyword: rigorous numerics
Keyword: fundamental matrix solution
Keyword: Floquet theory
Keyword: analytical category
MSC: 34A05
MSC: 37B55
MSC: 65G99
idZBL: Zbl 06537665
idMR: MR3436565
DOI: 10.1007/s10492-015-0114-6
.
Date available: 2015-11-17T20:30:08Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144450
.
Reference: [1] Cabré, X., Fontich, E., Llave, R. de la: The parameterization method for invariant manifolds I: Manifolds associated to non-resonant subspaces.Indiana Univ. Math. J. 52 (2003), 283-328. Zbl 1034.37016, MR 1976079, 10.1512/iumj.2003.52.2245
Reference: [2] Cabré, X., Fontich, E., Llave, R. de la: The parameterization method for invariant manifolds II: Regularity with respect to parameters.Indiana Univ. Math. J. 52 (2003), 329-360. Zbl 1034.37017, MR 1976080
Reference: [3] Cabré, X., Fontich, E., Llave, R. de la: The parameterization method for invariant manifolds III: Overview and applications.J. Differ. Equations 218 (2005), 444-515. Zbl 1101.37019, MR 2177465, 10.1016/j.jde.2004.12.003
Reference: [4] Castelli, R., Lessard, J.-P.: A method to rigorously enclose eigenpairs of complex interval matrices.Internat. Conf. Appl. Math. In Honor of the 70th Birthday of K. Segeth Academy of Sciences of the Czech Republic, Institute of Mathematics, Prague (2013), 21-31. MR 3204427
Reference: [5] Castelli, R., Lessard, J.-P.: Rigorous numerics in Floquet theory: computing stable and unstable bundles of periodic orbits.SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 204-245. Zbl 1293.37033, MR 3032858, 10.1137/120873960
Reference: [6] Castelli, R., Lessard, J.-P., James, J. D. Mireles: Parameterization of invariant manifolds for periodic orbits I: Efficient numerics via the Floquet normal form.SIAM J. Appl. Dyn. Syst. (electronic only) 14 (2015), 132-167. MR 3304254, 10.1137/140960207
Reference: [7] Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs.SIAM J. Numer. Anal. 45 (2007), 1398-1424. Zbl 1151.65074, MR 2338393, 10.1137/050645968
Reference: [8] Gameiro, M., Lessard, J.-P.: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs.J. Differ. Equations 249 (2010), 2237-2268. Zbl 1256.35196, MR 2718657, 10.1016/j.jde.2010.07.002
Reference: [9] Hungria, A., Lessard, J.-P., James, J. D. Mireles: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach.(to appear) in Math. Comput. (2015).
Reference: [10] Lessard, J.-P., James, J. D. M., Reinhardt, C.: Computer assisted proof of transverse saddle-to-saddle connecting orbits for first order vector fields.J. Dyn. Differ. Equations 26 (2014), 267-313. MR 3207723, 10.1007/s10884-014-9367-0
Reference: [11] James, J. D. Mireles, Mischaikow, K.: Rigorous a posteriori computation of (un)stable manifolds and connecting orbits for analytic maps.SIAM J. Appl. Dyn. Syst. (electronic only) 12 (2013), 957-1006. MR 3068557, 10.1137/12088224X
Reference: [12] Rump, S. M.: INTLAB---INTerval LABoratory.T. Csendes Developments in Reliable Computing SCAN-98 conference, Budapest. Kluwer Academic Publishers Dordrecht (1999), 77-104, http://www.ti3.tu-harburg.de/rump/. Zbl 0949.65046
Reference: [13] Yakubovich, V. A., Starzhinskij, V. M.: Linear Differential Equations with Periodic Coefficients, Vol. 1, 2.Wiley, New York Halsted, Jerusalem (1975). Zbl 0308.34001, MR 0364740
.

Files

Files Size Format View
AplMat_60-2015-6_2.pdf 318.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo