Previous |  Up |  Next

Article

Title: Inverse problem for semilinear ultraparabolic equation of higher order (English)
Author: Protsakh, Nataliya
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 140
Issue: 4
Year: 2015
Pages: 395-404
Summary lang: English
.
Category: math
.
Summary: We study the existence and the uniqueness of the weak solution of an inverse problem for a semilinear higher order ultraparabolic equation with Lipschitz nonlinearity. The main aim is to determine the weak solution of the equation and some functions that depend on the time variable, appearing on the right-hand side of the equation. The overdetermination conditions introduced are of integral type. In order to prove the solvability of this problem in Sobolev spaces we use the Galerkin method and the method of successive approximations. (English)
Keyword: ultraparabolic equation
Keyword: mixed problem
Keyword: inverse problem
Keyword: weak solution
MSC: 35K70
MSC: 35R30
idZBL: Zbl 06537672
idMR: MR3432541
DOI: 10.21136/MB.2015.144458
.
Date available: 2015-11-17T20:44:07Z
Last updated: 2020-07-29
Stable URL: http://hdl.handle.net/10338.dmlcz/144458
.
Reference: [1] Beilina, N. V.: On solvability of an inverse problem for hyperbolic equation with an integral overdetermination condition.Fiz.-Mat. Ser. Vestn. Samar. Gos. Tehn. Univ 23 (2011), 34-39 Russian.
Reference: [2] Gajewski, H., Gröger, K., Zacharias, K.: Nichtlineare Operatorgleichungen und Operatordifferentialgleichungen.Mathematische Lehrbücher und Monographien, II. Abteilung, Mathematische Monographien 38 Akademie, Berlin German (1974). MR 0636412
Reference: [3] Ivanchov, M.: Inverse Problems for Equations of Parabolic Type.Mathematical Studies, Monograph Series 10 VNTL Publishers, L'viv (2003). Zbl 1147.35110, MR 2406459
Reference: [4] Kamynin, V. L.: On the inverse problem of determining the right-hand side of a parabolic equation under an integral overdetermination condition.Math. Notes 77 (2005), 482-493 translated from Matematicheskie Zametki 77 (2005), 522-534. Zbl 1075.35106, MR 2178019, 10.1007/s11006-005-0047-6
Reference: [5] Kolmogoroff, A.: Zufällige Bewegungen (zur Theorie der Brownschen Bewegung).Ann. Math. (2) 35 German (1934), 116-117. Zbl 0008.39906, MR 1503147
Reference: [6] Kozhanov, A. I.: An inverse problem with an unknown coefficient and right-hand side for a parabolic equation. II.J. Inverse Ill-Posed Probl. 11 (2003), 505-522. Zbl 1142.35626, MR 2018675, 10.1515/156939403770888246
Reference: [7] Lanconelli, E., Pascucci, A., Polidoro, S.: Linear and nonlinear ultraparabolic equations of Kolmogorov type arising in diffusion theory and in finance.Nonlinear Problems in Mathematical Physics and Related Topics II. In honour of Professor O. A. Ladyzhenskaya Int. Math. Ser. (N. Y.) 2 Kluwer Academic Publishers, New York (2002), 243-265 M. S. Birman et al. Zbl 1032.35114, MR 1972000
Reference: [8] Lavrenyuk, S., Protsakh, N.: Boundary value problem for nonlinear ultraparabolic equation in unbounded and with respect to time variable domain.Tatra Mt. Math. Publ. 38 (2007), 131-146. MR 2428919
Reference: [9] Lavrenyuk, S. P., Protsakh, N. P.: Mixed problem for a nonlinear ultraparabolic equation that generalizes the diffusion equation with inertia.Ukr. Mat. Zh. 58 (2006), 1192-1210 Ukrainian translation in Ukr. Math. J. 58 (2006), 1347-1368. Zbl 1114.35112, MR 2345088, 10.1007/s11253-006-0137-y
Reference: [10] Protsakh, N.: Inverse problem for an ultraparabolic equation.Tatra Mt. Math. Publ. 54 (2013), 133-151. MR 3099656
Reference: [11] Safiullova, R. R.: On solvability of the linear inverse problem with unknown composite right-hand side in hyperbolic equation.Vestn. Yuzhno-Ural. Gos. Univ., Ser. Mat. Model. Program. 27 Russian (2009), 93-105. Zbl 1192.35189
.

Files

Files Size Format View
MathBohem_140-2015-4_3.pdf 259.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo