Previous |  Up |  Next

Article

Title: Log-optimal investment in the long run with proportional transaction costs when using shadow prices (English)
Author: Dostál, Petr
Author: Klůjová, Jana
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 51
Issue: 4
Year: 2015
Pages: 588-628
Summary lang: English
.
Category: math
.
Summary: We consider a non-consuming agent interested in the maximization of the long-run growth rate of a wealth process investing either in a money market and in one risky asset following a geometric Brownian motion or in futures following an arithmetic Brownian motion. The agent faces proportional transaction costs, and similarly as in [17] where the case of stock trading is considered, we show how the log-optimal optimal policies in the long run can be derived when using the technical tool of shadow prices. We also provide a brief link between technical tools used in this paper and the ones used in [14,15,17]. (English)
Keyword: proportional transaction costs
Keyword: logarithmic utility
Keyword: shadow prices
MSC: 60G44
MSC: 60H30
MSC: 91B28
idZBL: Zbl 06537774
idMR: MR3423189
DOI: 10.14736/kyb-2015-4-0588
.
Date available: 2015-11-20T12:16:01Z
Last updated: 2016-04-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144470
.
Reference: [1] Algoet, P. H., Cover, T. M.: Asymptotic optimality and asymptotic equipartition properties of log-optimum investment..Ann. Probab. 16 (1988), 2, 876-898. MR 0929084, 10.1214/aop/1176991793
Reference: [2] Akian, M., Menaldi, J. L., Sulem, A.: On an investment-consumption model with transaction costs..SIAM J. Control Optim. 34 (1996), 1, 329-364. Zbl 1035.91505, MR 1372917, 10.1137/s0363012993247159
Reference: [3] Akian, M., Sulem, A., Taksar, M. I.: Dynamic optimization of long-term Growth rate for a portfolio with transaction costs and logarithmic utility..Math. Finance 11 (2001), 2, 153-188. Zbl 1055.91016, MR 1822775, 10.1111/1467-9965.00111
Reference: [4] Bayer, Ch., Veliyev, B.: Utility Maximization in a Binomial Model with Transaction Costs: a Duality Approach Based on the Shadow Price Process..arXiv: 1209.5175. MR 3224442
Reference: [5] Benedetti, G., Campi, L., Kallsen, J., Muhle-Karbe, J.: On the existence of shadow prices..Finance Stoch. 17 (2013), 801-818. Zbl 1280.91070, MR 3105934, 10.1007/s00780-012-0201-4
Reference: [6] Choi, J. H., Sirbu, M., Zitkovix, G.: Shadow Prices and well-posedness in the problem of optimal investment and consumption with transaction costs..SIAM J. Control Optim. 51 (2013), 6, 4414-4449. MR 3141745, 10.1137/120881373
Reference: [7] Czichowsky, Ch., Muhle-Karbe, J., Schachermayer, W.: Transaction costs, shadow prices, and duality in discrete time..SIAM J. Financial Math. 5 (2014), 1, 258-277. Zbl 1318.91179, MR 3194656, 10.1137/130925864
Reference: [8] Bell, R. M., Cover, T. M.: Competitive optimality of logarithmic investment..Math. Oper. Res. 5 (1980), 2, 161-166. Zbl 0442.90120, MR 0571810, 10.1287/moor.5.2.161
Reference: [9] Bell, R., Cover, T. M.: Game-theoretic optimal portfolios..Management Sci. 34 (1998), 6, 724-733. Zbl 0649.90014, MR 0943277, 10.1287/mnsc.34.6.724
Reference: [10] Breiman, L.: Optimal gambling system for flavorable games..In: Proc. Fourth Berkeley Symp. on Math. Statist. and Prob. 1 (J. Neyman, ed.), Univ. of Calif. Press, Berkeley 1961, pp. 65-78. MR 0135630
Reference: [11] Browne, S., Whitt, W.: Portfolio choice and the Bayesian Kelly criterion..Adv. in Appl. Probab. 28 (1996), 4, 1145-1176. Zbl 0867.90010, MR 1418250, 10.2307/1428168
Reference: [12] Davis, M., Norman, A.: Portfolio selection with transaction costs..Math. Oper. Res. 15 (1990), 4, 676-713. Zbl 0717.90007, MR 1080472, 10.1287/moor.15.4.676
Reference: [13] Dostál, P.: Almost optimal trading strategies for small transaction costs and a HARA utility function..J. Comb. Inf. Syst. Sci. 38 (2010), 257-291.
Reference: [14] Dostál, P.: Futures trading with transaction costs..In: Proc. ALGORITMY 2009. (A. Handlovičová, P. Frolkovič, K. Mikula, and D. Ševčovič, eds.), Slovak Univ. of Tech. in Bratislava, Publishing House of STU, Bratislava 2009, pp. 419-428. Zbl 1184.91199
Reference: [15] Dostál, P.: Investment strategies in the long run with proportional transaction costs and HARA utility function..Quant. Finance 9 (2009), 2, 231-242. MR 2512992, 10.1080/14697680802039873
Reference: [16] Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: Asymptotics and duality for the Davis and Norman problem..Stochastics 84 (2012), 5-6, 625-641. Zbl 1276.91093, MR 2995515, 10.1080/17442508.2011.619699
Reference: [17] Gerhold, S., Muhle-Karbe, J., Schachermayer, W.: The dual optimizer for the growth-optimal portfolio under transaction costs..Finance Stoch. 17 (2013), 2, 325-354. Zbl 1319.91142, MR 3038594, 10.1007/s00780-011-0165-9
Reference: [18] Goll, T., Kallsen, J.: Optimal portfolios for logarithmic utility..Stochastic Process. Appl. 89 (2000), 1, 31-48. Zbl 1048.91064, MR 1775225, 10.1016/s0304-4149(00)00011-9
Reference: [19] Herczegh, A., Prokaj, V.: Shadow\! Price in the Power Utility Case..arXiv: 1112.4385. MR 3375886
Reference: [20] Janeček, K.: Optimal Growth in Gambling and Investing..MSc Thesis, Charles University Prague 1999.
Reference: [21] Janeček, K., Shreve, S. E.: Asymptotic analysis for optimal investment and consumption with transaction costs..Finance Stoch. 8 (2004), 2, 181-206. MR 2048827, 10.1007/s00780-003-0113-4
Reference: [22] Janeček, K., Shreve, S. E.: Futures trading with transaction costs..Illinois J. Math. 54 (2010), 4, 1239-1284. Zbl 1276.91094, MR 2981847
Reference: [23] Kallenberg, O.: Foundations of Modern Probability..Springer Verlag, Heidelberg 1997. Zbl 0996.60001, MR 1464694
Reference: [24] Kallsen, J., Muhle-Karbe, J.: On using shadow in portfolio optimization with transaction costs..Ann. Appl. Probab. 20 (2010), 4, 1341-1358. MR 2676941, 10.1214/09-aap648
Reference: [25] Kallsen, J., Muhle-Karbe, J.: Existence of shadow prices in finite probability spaces..Math. Methods Oper. Res. 73 (2011), 2, 251-262. Zbl 1217.91170, MR 2776563, 10.1007/s00186-011-0345-6
Reference: [26] Kallsen, J., Muhle-Karbe, J.: The General Structure of Optimal Investment and Consumption with Small Transaction Costs..arXiv: 1303.3148.
Reference: [27] Kelly, J. L.: A new interpretation of information rate..Bell Sys. Tech. J. 35 (1956), 4, 917-926. MR 0090494, 10.1002/j.1538-7305.1956.tb03809.x
Reference: [28] Magill, M. J. P., Constantinides, G. M.: Portfolio selection with transaction costs..J. Econom. Theory 13 (1976), 2, 245-263. MR 0469196, 10.1016/0022-0531(76)90018-1
Reference: [29] Merton, R. C.: Optimum consumption and portfolio rules in a continuous-time model..J. Econom. Theory 3 (1971), 4, 373-413. Erratum 6 (1973), 2, 213-214, Zbl 1011.91502, MR 0456373, 10.1016/0022-0531(71)90038-X
Reference: [30] Morton, A. J., Pliska, S.: Optimal portfolio management with fixed transaction costs..Math. Finance 5 (1995), 4, 337-356. Zbl 0866.90020, 10.1111/j.1467-9965.1995.tb00071.x
Reference: [31] Revuz, D., Yor, M.: Continuous Martingales and Brownian Motion..Springer Verlag, Heidelberg, Berlin, New York 1999. Zbl 1087.60040, MR 1725357, 10.1007/978-3-662-06400-9
Reference: [32] Rokhlin, D. B.: On the game interpretation of a shadow price process in utility maximization problems under transaction costs..Finance Stoch. 17 (2013), 4, 819-838. Zbl 1279.91150, MR 3105935, 10.1007/s00780-013-0206-7
Reference: [33] Rotando, L. M., Thorp, E. O.: The Kelly criterion and the stock market..Amer. Math. Monthly 99 (1992), 10, 922-931. Zbl 0768.90105, MR 1190557, 10.2307/2324484
Reference: [34] Samuelson, P. A.: The ``fallacy" of maximizing the geometric mean in long sequences of investing or gambling..Proc. Natl. Acad. Sci. 68 (1971), 10, 2493-2496. MR 0295739, 10.1073/pnas.68.10.2493
Reference: [35] Sass, J., Schäl, M.: Numeraire portfolios and utility-based price systems under proportional transaction costs..Decis. Econ. Finance 37 (2014), 2, 195-234. MR 3260886, 10.1007/s10203-012-0132-8
Reference: [36] Shreve, S. E., Soner, H. M.: Optimal investment and consumption with transaction costs..Ann. Appl. Probab. 4 (1994), 3, 609-692. Zbl 0813.60051, MR 1284980, 10.1214/aoap/1177004966
Reference: [37] Skorokhod, A.: Stochastic equations for diffusion processes in a bounded region..Theory Probab. Appl. 6 (1961), 3, 264-274. Zbl 0201.49302, 10.1137/1106035
Reference: [38] Skorokhod, A.: Stochastic equations for diffusion processes in a bounded region II..Theory Probab. Appl. 7 (1962), 1, 3-23. Zbl 0201.49302, 10.1137/1107002
Reference: [39] Thorp, E.: Portfolio choice and the Kelly criterion..In: Stochastic Optimization Models in Finance (W. T. Ziemba and R. G. Vickson, eds.), Acad. Press, Bew York 1975, pp. 599-619. 10.1016/b978-0-12-780850-5.50051-4
Reference: [40] Thorp, E.: The Kelly criterion in blackjack, sports betting and the stock market..In: Finding the Edge: Mathematical Analysis of Casino Games (O. Vancura, J. A. Cornelius and W. R. Eadington, eds.), Institute for the Study of Gambling and Commercial Gaming, Reno 2000, pp. 163-213.
.

Files

Files Size Format View
Kybernetika_51-2015-4_3.pdf 541.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo