Previous |  Up |  Next

Article

Title: Semicommutativity of the rings relative to prime radical (English)
Author: Kose, Handan
Author: Ungor, Burcu
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 56
Issue: 4
Year: 2015
Pages: 401-415
Summary lang: English
.
Category: math
.
Summary: In this paper, we introduce a new kind of rings that behave like semicommutative rings, but satisfy yet more known results. This kind of rings is called $P$-semicommutative. We prove that a ring $R$ is $P$-semicommutative if and only if $R[x]$ is $P$-semicommutative if and only if $R[x, x^{-1}]$ is $P$-semicommutative. Also, if $R[[x]]$ is $P$-semicommutative, then $R$ is $P$-semicommutative. The converse holds provided that $P(R)$ is nilpotent and $R$ is power serieswise Armendariz. For each positive integer $n$, $R$ is $P$-semicommutative if and only if $T_n(R)$ is $P$-semicommutative. For a ring $R$ of bounded index $2$ and a central nilpotent element $s$, $R$ is $P$-semicommutative if and only if $K_s(R)$ is $P$-semicommutative. If $T$ is the ring of a Morita context $(A,B,M,N,\psi,\varphi)$ with zero pairings, then $T$ is $P$-semicommutative if and only if $A$ and $B$ are $P$-semicommutative. Many classes of such rings are constructed as well. We also show that the notions of clean rings and exchange rings coincide for $P$-semicommutative rings. (English)
Keyword: semicommutative ring
Keyword: $P$-semicommutative ring
Keyword: prime radical of a ring
MSC: 16S50
MSC: 16U99
idZBL: Zbl 06537716
idMR: MR3434221
DOI: 10.14712/1213-7243.2015.140
.
Date available: 2015-12-17T11:43:31Z
Last updated: 2018-01-04
Stable URL: http://hdl.handle.net/10338.dmlcz/144750
.
Reference: [1] Akalan E., Vas L.: Classes of almost clean rings.Algebr. Represent. Theory 16 (2013), no. 3, 843–857. Zbl 1275.16026, MR 3049674, 10.1007/s10468-012-9334-6
Reference: [2] Chen H.: Rings Related to Stable Range Conditions.Series in Algebra 11, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2011. Zbl 1245.16002, MR 2752904
Reference: [3] Chen H.: On strongly nil clean matrices.Comm. Algebra 41 (2013), no. 3, 1074–1086. Zbl 1286.16025, MR 3037180, 10.1080/00927872.2011.637265
Reference: [4] Chen H.: On $2\times 2$ strongly clean matrices.Bull. Korean Math. Soc. 50 (2013), no. 1, 125–134. Zbl 1263.15029, MR 3029536, 10.4134/BKMS.2013.50.1.125
Reference: [5] Chen H.: Exchange ideals with all idempotents central.Algebra Colloq. 20 (2013), no. 4, 643–652. Zbl 1292.16008, MR 3116793, 10.1142/S1005386713000618
Reference: [6] Chen W.: On nil-semicommutative rings.Thai J. Math. 9 (2011), 39–47. Zbl 1264.16040, MR 2833751
Reference: [7] Hirano Y., Huynh D.V., Park J.K.: On rings whose prime radical contains all nilpotent elements of index two.Arch. Math. (Basel) 66 (1996), 360–365. Zbl 0862.16011, MR 1383899, 10.1007/BF01781553
Reference: [8] Huh C., Kim H.K., Lee D.S., Lee Y.: Prime radicals of formal power series rings.Bull. Korean Math. Soc. 38 (2001), 623–633. Zbl 1001.16011, MR 1865820
Reference: [9] Huh C., Lee Y., Smoktunowicz A.: Armendariz rings and semicommutative rings.Comm. Algebra 30 (2002), no. 2, 751–761. Zbl 1023.16005, MR 1883022, 10.1081/AGB-120013179
Reference: [10] Hungerford T.W.: Algebra.Springer, New York, 1980. Zbl 0442.00002, MR 0600654
Reference: [11] Kim N.K., Lee Y.: Extensions of reversible rings.J. Pure Appl. Algebra 185 (2003), 207–223. Zbl 1040.16021, MR 2006427, 10.1016/S0022-4049(03)00109-9
Reference: [12] Liang L., Wang L., Liu Z.: On a generalization of semicommutative rings.Taiwanese J. Math. 11 (2007), 1359–1368. Zbl 1142.16019, MR 2368654
Reference: [13] McCoy N.H.: The Theory of Rings.Chelsea Publishing Company, New York, 1973. Zbl 0273.16001, MR 0393090
Reference: [14] Mohammadi R., Moussavi A., Zahiri M.: On nil-semicommutative rings.Int. Electron. J. Algebra 11 (2012), 20–37. Zbl 1253.16024, MR 2876884
Reference: [15] Nicholson W.K.: Lifting idempotents and exchange rings.Trans. Amer. Math. Soc. 229 (1977), 269–278. Zbl 0352.16006, MR 0439876, 10.1090/S0002-9947-1977-0439876-2
Reference: [16] Ozen T., Agayev N., Harmanci A.: On a class of semicommutative rings.Kyungpook Math. J. 51 (2011), 283–291. Zbl 1232.16025, MR 2843017, 10.5666/KMJ.2011.51.3.283
Reference: [17] Qu Y., Wei J.: Some notes on nil-semicommutative rings.Turk. J. Math. 38 (2014), 212–224. MR 3164786, 10.3906/mat-1202-44
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_56-2015-4_1.pdf 281.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo