Previous |  Up |  Next

Article

Full entry | Fulltext not available (moving wall 24 months)      Feedback
Keywords:
solvable polynomial algebra; Gröbner basis; minimal free resolution
Summary:
Let $A=K[a_1,\ldots ,a_n]$ be a (noncommutative) solvable polynomial algebra over a field $K$ in the sense of A. Kandri-Rody and V. Weispfenning [Non-commutative Gröbner bases in algebras of solvable type, J. Symbolic Comput. 9 (1990), 1--26]. This paper presents a comprehensive study on the computation of minimal free resolutions of modules over $A$ in the following two cases: (1) $A=\bigoplus_{p\in\mathbb{N}}A_p$ is an $\mathbb{N}$-graded algebra with the degree-0 homogeneous part $A_0=K$; (2) $A$ is an $\mathbb{N}$-filtered algebra with the filtration $\{F_pA\}_{p\in\mathbb{N}}$ determined by a positive-degree function on $A$.
References:
[AL1] Apel J., Lassner W.: An extension of Buchberger's algorithm and calculations in enveloping fields of Lie algebras. J. Symbolic Comput. 6 (1988), 361–370. DOI 10.1016/S0747-7171(88)80053-1 | MR 0988423 | Zbl 0663.68044
[AL2] Adams W.W., Loustaunau P.: An Introduction to Gröbner Bases. Graduate Studies in Mathematics, 3, American Mathematical Society, Providence, RI, 1994. DOI 10.1090/gsm/003/02 | MR 1287608 | Zbl 0803.13015
[Bu1] Buchberger B.: Ein Algorithmus zum Auffinden der Basiselemente des Restklassenringes nach einem nulldimensionalen polynomideal. Ph.D. Thesis, University of Innsbruck, 1965. Zbl 1245.13020
[Bu2] Buchberger B.: Gröbner bases: An algorithmic method in polynomial ideal theory. in Multidimensional Systems Theory (Bose, N.K., ed.), Reidel Dordrecht, 1985, pp. 184–232. Zbl 0587.13009
[BW] Becker T., Weispfenning V.: Gröbner Bases. Springer, New York, 1993. MR 1213453 | Zbl 0772.13010
[CDNR] Capani A., De Dominicis G., Niesi G., Robbiano L.: Computing minimal finite free resolutions. J. Pure Appl. Algebra 117/118 (1997), 105–117. DOI 10.1016/S0022-4049(97)00007-8 | MR 1457835 | Zbl 0906.13006
[DGPS] Decker W., Greuel G.-M., Pfister G., Schönemann H.: Singular $3$-$1$-$3$ --- A computer algebra system for polynomial computations. http://www.singular.uni-kl.de(2011)
[Eis] Eisenbud D.: Commutative Algebra with a View Toward to Algebraic Geometry. Graduate Texts in Mathematics, 150, Springer, New York, 1995. MR 1322960
[Fau] Faugére J.-C.: A new efficient algorithm for computing Gröobner bases without reduction to zero $(F5)$. in Proceedings ISSAC'02, ACM Press, New York, 2002, pp. 75–82. MR 2035234
[Fröb] Fröberg R.: An Introduction to Gröbner Bases. Wiley, Chichester, 1997. MR 1483316 | Zbl 0997.13500
[Gal] Galligo A.: Some algorithmic questions on ideals of differential operators. Proc. EUROCAL'85, Lecture Notes in Comput. Sci., 204, Springer, Berlin, 1985, pp. 413–421. MR 0826576 | Zbl 0634.16001
[Gol] Golod E.S.: Standard bases and homology. in Some Current Trends in Algebra (Varna, 1986), Lecture Notes in Mathematics, 1352, Springer, Berlin, 1988, pp. 88–95. DOI 10.1007/BFb0082019 | MR 0981820 | Zbl 0892.16024
[Hu] Humphreys J.E.: Introduction to Lie Algebras and Representation Theory. Springer, New York-Berlin, 1972. MR 0323842 | Zbl 0447.17002
[Kr1] Krähmer U.: Notes on Koszul algebras. 2010, http://www.maths.gla.ac.uk/ ukraehmer/connected.pdf.
[Kr2] Kredel H.: Solvable Polynomial Rings. Shaker-Verlag, 1993. Zbl 0790.16027
[KP] Kredel H., Pesch M.: MAS, modula-$2$ algebra system. 1998, http://krum.rz.uni-mannheim.de/mas/
[KR1] Kreuzer M., Robbiano L.: Computational Commutative Algebra $1$. Springer, Berlin, 2000. DOI 10.1007/978-3-540-70628-1 | MR 1790326
[KR2] Kreuzer M., Robbiano L.: Computational Commutative Algebra $2$. Springer, Berlin, 2005. MR 2159476
[K-RW] Kandri-Rody A., Weispfenning V.: Non-commutative Gröbner bases in algebras of solvable type. J. Symbolic Comput. 9 (1990), 1–26. DOI 10.1016/S0747-7171(08)80003-X | MR 1044911 | Zbl 0715.16010
[Lev] Levandovskyy V.: Non-commutative computer algebra for polynomial algebra: Gröbner bases, applications and implementation. Ph.D. Thesis, TU Kaiserslautern, 2005.
[Li1] Li H.: Noncommutative Gröbner Bases and Filtered-Graded Transfer. Lecture Note in Mathematics, 1795, Springer, Berlin, 2002. DOI 10.1007/b84211 | MR 1947291
[Li2] Li H.: Gröbner Bases in Ring Theory. World Scientific Publishing Co., Hackensack, NJ, 2012. MR 2894019
[Li3] Li H.: On monoid graded local rings. J. Pure Appl. Algebra 216 (2012), 2697–2708. DOI 10.1016/j.jpaa.2012.03.031 | MR 2943750
[Li4] Li H.: A note on solvable polynomial algebras. Comput. Sci. J. Moldova 22 (2014), no. 1, 99–109; arXiv:1212.5988 [math.RA]. MR 3243257
[LS] Li H., Su C.: On (de)homogenized Gröbner bases. Journal of Algebra, Number Theory: Advances and Applications 3 (2010), no. 1, 35–70.
[LVO] Li H., Van Oystaeyen F.: Zariskian Filtrations. $K$-Monograph in Mathematics, 2, Kluwer Academic Publishers, Dordrecht, 1996. MR 1420862
[LW] Li H., Wu Y.: Filtered-graded transfer of Gröbner basis computation in solvable polynomial algebras. Comm. Algebra 28 (2000), no. 1, 15–32. DOI 10.1080/00927870008826825 | MR 1738569
[Sch] Schreyer F.O.: Die Berechnung von Syzygien mit dem verallgemeinerten Weierstrasschen Divisionsatz. Diplomarbeit, Hamburg, 1980.
[SWMZ] Sun Y. et al.: A signature-based algorithm for computing Gröbner bases in solvable polynomial algebras. in Proc. ISSAC'12, ACM Press, New York, 2012, pp. 351–358. MR 3206324 | Zbl 1308.68193
Partner of
EuDML logo