Previous |  Up |  Next

Article

Title: Generic one-step bracket-generating distributions of rank four (English)
Author: De Zanet, Chiara
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 257-264
Summary lang: English
.
Category: math
.
Summary: We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis. (English)
Keyword: generic distributions of rank four
Keyword: canonical connection
Keyword: parabolic geometry
MSC: 53C15
MSC: 58A30
idZBL: Zbl 06537728
idMR: MR3449106
DOI: 10.5817/AM2015-5-257
.
Date available: 2016-01-11T10:01:27Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144768
.
Reference: [1] Agrachev, A., Marigo, A.: Rigid Carnot algebras: classification.J. Dynam. Control System 11 (2005), 449–494. MR 2170662, 10.1007/s10883-005-8816-9
Reference: [2] Biquard, O.: Quaternionic contact structures.Quaternionic contact structures in mathematics and physics (Rome 1999), Univ. Studi Roma, 1999, pp. 29–30. MR 1848655
Reference: [3] Biquard, O.: Métriques d’Einstein asymptotiquement symétriques.Astérisque, no. 265, Soc. Math. France Inst. Henri Poincaré, 2000. Zbl 0967.53030
Reference: [4] Čap, A., Eastwood, M.: Some special geometry in dimension six.Proceedings of the 22nd Winter School Geometry and Physics (Srní, 2002). Rend. Circ. Mat. Palermo (2) Suppl. No. 71, 2003, pp. 93–98. Zbl 1047.53018, MR 1982436
Reference: [5] Čap, A., Schmalz, G.: Partially integrable almost CR manifolds of CR dimension and codimension two.Lie Groups Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie (Kyoto$/$Nara, 1999), Adv. Stud. Pure Math. 37, 2002, electronically available as ESI Preprint 937, pp. 45–77. Zbl 1041.32023, MR 1980896
Reference: [6] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Math. Surveys Monogr., vol. 154, AMS, 2009. Zbl 1183.53002, MR 2532439, 10.1090/surv/154
Reference: [7] Cartan, É.: Les systeme de Pfaff a cinq variables et les équations aux d érivées partielles du second ordre.Ann. Sci. École Norm. 27 (1910), 109–192. MR 1509120
Reference: [8] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications.Math. Surveys Monogr., vol. 91, AMS, 2002. Zbl 1044.53022, MR 1867362
Reference: [9] Schmalz, G., Slovák, J.: The geometry of hyperbolic and elliptic $CR$–manifolds of codimension two.Asian J. Math. 4 (3) (2000), 565–598. Zbl 0972.32025, MR 1796695, 10.4310/AJM.2000.v4.n3.a5
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_2.pdf 455.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo