Title:
|
Generic one-step bracket-generating distributions of rank four (English) |
Author:
|
De Zanet, Chiara |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
51 |
Issue:
|
5 |
Year:
|
2015 |
Pages:
|
257-264 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We give a uniform, explicit description of the generic types of one–step bracket–generating distributions of rank four. A manifold carrying such a structure has dimension at least five and no higher than ten. For each of the generic types, we give a brief description of the resulting class of generic distributions and of geometries equivalent to them. For dimensions different from eight and nine, these are available in the literature. The remaining two cases are dealt with in my doctoral thesis. (English) |
Keyword:
|
generic distributions of rank four |
Keyword:
|
canonical connection |
Keyword:
|
parabolic geometry |
MSC:
|
53C15 |
MSC:
|
58A30 |
idZBL:
|
Zbl 06537728 |
idMR:
|
MR3449106 |
DOI:
|
10.5817/AM2015-5-257 |
. |
Date available:
|
2016-01-11T10:01:27Z |
Last updated:
|
2017-02-02 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144768 |
. |
Reference:
|
[1] Agrachev, A., Marigo, A.: Rigid Carnot algebras: classification.J. Dynam. Control System 11 (2005), 449–494. MR 2170662, 10.1007/s10883-005-8816-9 |
Reference:
|
[2] Biquard, O.: Quaternionic contact structures.Quaternionic contact structures in mathematics and physics (Rome 1999), Univ. Studi Roma, 1999, pp. 29–30. MR 1848655 |
Reference:
|
[3] Biquard, O.: Métriques d’Einstein asymptotiquement symétriques.Astérisque, no. 265, Soc. Math. France Inst. Henri Poincaré, 2000. Zbl 0967.53030 |
Reference:
|
[4] Čap, A., Eastwood, M.: Some special geometry in dimension six.Proceedings of the 22nd Winter School Geometry and Physics (Srní, 2002). Rend. Circ. Mat. Palermo (2) Suppl. No. 71, 2003, pp. 93–98. Zbl 1047.53018, MR 1982436 |
Reference:
|
[5] Čap, A., Schmalz, G.: Partially integrable almost CR manifolds of CR dimension and codimension two.Lie Groups Geometric Structures and Differential Equations – One Hundred Years after Sophus Lie (Kyoto$/$Nara, 1999), Adv. Stud. Pure Math. 37, 2002, electronically available as ESI Preprint 937, pp. 45–77. Zbl 1041.32023, MR 1980896 |
Reference:
|
[6] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Math. Surveys Monogr., vol. 154, AMS, 2009. Zbl 1183.53002, MR 2532439, 10.1090/surv/154 |
Reference:
|
[7] Cartan, É.: Les systeme de Pfaff a cinq variables et les équations aux d érivées partielles du second ordre.Ann. Sci. École Norm. 27 (1910), 109–192. MR 1509120 |
Reference:
|
[8] Montgomery, R.: A Tour of Subriemannian Geometries, Their Geodesics and Applications.Math. Surveys Monogr., vol. 91, AMS, 2002. Zbl 1044.53022, MR 1867362 |
Reference:
|
[9] Schmalz, G., Slovák, J.: The geometry of hyperbolic and elliptic $CR$–manifolds of codimension two.Asian J. Math. 4 (3) (2000), 565–598. Zbl 0972.32025, MR 1796695, 10.4310/AJM.2000.v4.n3.a5 |
. |