Previous |  Up |  Next

Article

Title: Ward identities from recursion formulas for correlation functions in conformal field theory (English)
Author: Zuevsky, Alexander
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 51
Issue: 5
Year: 2015
Pages: 347-356
Summary lang: English
.
Category: math
.
Summary: A conformal block formulation for the Zhu recursion procedure in conformal field theory which allows to find $n$-point functions in terms of the lower correlations functions is introduced. Then the Zhu reduction operators acting on a tensor product of VOA modules are defined. By means of these operators we show that the Zhu reduction procedure generates explicit forms of Ward identities for conformal blocks of vertex operator algebras. Explicit examples of Ward identities for the Heisenberg and free fermionic vertex operator algebras are supplied. (English)
Keyword: conformal field theory
Keyword: conformal blocks
Keyword: recursion formulas
Keyword: vertex algebras
MSC: 17B69
MSC: 30F10
MSC: 81T40
idZBL: Zbl 06537735
idMR: MR3449113
DOI: 10.5817/AM2015-5-347
.
Date available: 2016-01-11T10:14:44Z
Last updated: 2017-02-02
Stable URL: http://hdl.handle.net/10338.dmlcz/144775
.
Reference: [1] Belavin, A., Polyakov, A., Zamolodchikov, A.: Infinite conformal symmetries in two-dimensional quantum field theory.Nuclear. Phys. B 241 (1984), 333–380. MR 0757857, 10.1016/0550-3213(84)90052-X
Reference: [2] Ben-Zvi, D., Frenkel, E.: Vertex algebras and algebraic curves.Mathematical Surveys and Monographs, vol. 88, American Mathematical Society, Providence, RI, 2004, Second ed. Zbl 1106.17035, MR 2082709
Reference: [3] Borcherds, R.E.: Vertex algebras, Kac-Moody algebras and the Monster.Proc. Nat. Acad. Sci. U.S.A. 83 (1986), 3068–3071. Zbl 0613.17012, MR 0843307, 10.1073/pnas.83.10.3068
Reference: [4] Dong, C., Lepowsky, J.: Generalized Vertex Algebras and Relative Vertex Operators.Progr. Math., vol. 112, Birkhäuser (Boston, MA), 1993. Zbl 0803.17009, MR 1233387
Reference: [5] Frenkel, I., Huang, Y., Lepowsky, J.: On axiomatic approaches to vertex operator algebras and modules.Mem. Amer. Math. Soc. 104 (494) (1993), viii+64 pp. Zbl 0789.17022, MR 1142494
Reference: [6] Frenkel, I. B., Lepowsky, J., Meurman, A.: Vertex Operator Algebras and the Monster.Pure Appl. Math., vol. 134, Academic Press, Boston, 1988. Zbl 0674.17001, MR 0996026
Reference: [7] Friedan, D., Shenker, S.: The analytic geometry of two dimensional conformal field theory.Nuclear Phys. B 281 (1987), 509–545. MR 0869564
Reference: [8] Gilroy, T.: Genus Two Zhu Theory for Vertex Operator Algebras.Ph.D. thesis, NUI Galway, 2013, 1–89.
Reference: [9] Gunning, R.C.: Lectures on Riemann Surfaces.Princeton Univ. Press, Princeton, 1966. Zbl 0175.36801, MR 0207977
Reference: [10] Hurley, D., Tuite, M.P.: Virasoro correlation functions for vertex operator algebras.Internat. J. Math. 23 (10) (2012), 17 pp., 1250106. Zbl 1335.17016, MR 2999051, 10.1142/S0129167X12501066
Reference: [11] Kac, V.: Vertex Operator Algebras for Beginners.University Lecture Series, vol. 10, AMS, Providence, 1998.
Reference: [12] Kawamoto, N., Namikawa, Y., Tsuchiya, A., Yamada, Y.: Geometric realization of conformal field theory on Riemann surfaces.Comm. Math. Phys. 116 (1988), 247–308. Zbl 0648.35080, MR 0939049, 10.1007/BF01225258
Reference: [13] Mason, G., Tuite, M.P.: Torus chiral $n$-point functions for free boson and lattice vertex operator algebras.Comm. Math. Phys. 235 (1) (2003), 47–68. Zbl 1020.17020, MR 1969720, 10.1007/s00220-002-0772-6
Reference: [14] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces I.Comm. Math. Phys. 300 (2010), 673–713. Zbl 1226.17024, MR 2736959, 10.1007/s00220-010-1126-4
Reference: [15] Mason, G., Tuite, M.P.: Vertex operators and modular forms. A window into zeta and modular physics.Math. Sci. Res. Inst. Publ., vol. 57, Cambridge Univ. Press, Cambridge, 2010, pp. 183–278. MR 2648364
Reference: [16] Mason, G., Tuite, M.P.: Free bosonic vertex operator algebras on genus two Riemann surfaces II.Contributions in Mathematical and Computational Sciences 8, Springer-Verlag, Berlin-Heidelberg, 2014. Zbl 1329.17027, MR 2736959
Reference: [17] Mason, G., Tuite, M.P., Zuevsky, A.: Torus $n$-point functions for $\mathbb{R}$-graded vertex operator superalgebras and continuous fermion orbifolds.Comm. Math. Phys. 283 (2008), 305–342. MR 2430636, 10.1007/s00220-008-0510-9
Reference: [18] Matsuo, A., Nagatomo, K.: Axioms for a vertex algebra and the locality of quantum fields.MSJ Memoirs 4 (1999), x+110 pp. Zbl 0928.17025, MR 1715197
Reference: [19] Serre, J.-P.: A course in Arithmetic.Springer-Verlag, Berlin, 1978. Zbl 0432.10001, MR 0344216
Reference: [20] Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal field theory on universal family of stable curves with gauge symmetrie.Adv. Stud. Pure Math. 19 (1989), 459–566. MR 1048605
Reference: [21] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras II.arXiv:1308.2441v1, submitted. MR 2824477
Reference: [22] Tuite, M.P., Zuevsky, A.: Genus two partition and correlation functions for fermionic vertex operator superalgebras I.Comm. Math. Phys. 306 (2011), 419–447. Zbl 1254.17024, MR 2824477, 10.1007/s00220-011-1258-1
Reference: [23] Tuite, M.P., Zuevsky, A.: The Szegö kernel on a sewn Riemann surface.Comm. Math. Phys. 306 (2011), 617–645. Zbl 1238.30029, MR 2825503, 10.1007/s00220-011-1310-1
Reference: [24] Tuite, M.P., Zuevsky, A.: A generalized vertex operator algebra for Heisenberg intertwiners.J. Pure Appl. Algebra 216 (2012), 1442–1453. Zbl 1287.17050, MR 2890514, 10.1016/j.jpaa.2011.10.025
Reference: [25] Ueno, K.: Introduction to conformal field theory with gauge symmetries.Geometry and Physics - Proceedings of the Conference at Aarhus Univeristy, Aarhus, Denmark, New York, Marcel Dekker, 1997. Zbl 0873.32022, MR 1423195
Reference: [26] Zhu, Y.: Modular invariance of characters of vertex operator algebras.J. Amer. Math. Soc. 9 (1996), 237–302. Zbl 0854.17034, MR 1317233, 10.1090/S0894-0347-96-00182-8
.

Files

Files Size Format View
ArchMathRetro_051-2015-5_9.pdf 502.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo