Previous |  Up |  Next

Article

Title: On the tree structure of the power digraphs modulo $n$ (English)
Author: Sawkmie, Amplify
Author: Singh, Madan Mohan
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 65
Issue: 4
Year: 2015
Pages: 923-945
Summary lang: English
.
Category: math
.
Summary: For any two positive integers $n$ and $k \geq 2$, let $G(n,k)$ be a digraph whose set of vertices is $\{0,1,\ldots ,n-1\}$ and such that there is a directed edge from a vertex $a$ to a vertex $b$ if $a^k \equiv b \pmod n$. Let $n=\prod \nolimits _{i=1}^r p_{i}^{e_{i}}$ be the prime factorization of $n$. Let $P$ be the set of all primes dividing $n$ and let $P_1,P_2 \subseteq P$ be such that $P_1 \cup P_2=P$ and $P_1 \cap P_2= \emptyset $. A fundamental constituent of $G(n,k)$, denoted by $G_{P_2}^{*}(n,k)$, is a subdigraph of $G(n,k)$ induced on the set of vertices which are multiples of $\prod \nolimits _{{p_i} \in P_2}p_i$ and are relatively prime to all primes $q \in P_1$. L. Somer and M. Křížek proved that the trees attached to all cycle vertices in the same fundamental constituent of $G(n,k)$ are isomorphic. In this paper, we characterize all digraphs $G(n,k)$ such that the trees attached to all cycle vertices in different fundamental constituents of $G(n,k)$ are isomorphic. We also provide a necessary and sufficient condition on $G(n,k)$ such that the trees attached to all cycle vertices in $G(n,k)$ are isomorphic. (English)
Keyword: congruence
Keyword: symmetric digraph
Keyword: fundamental constituent
Keyword: tree
Keyword: digraph product
Keyword: semiregular digraph
MSC: 05C05
MSC: 05C20
MSC: 11A07
MSC: 11A15
MSC: 68R10
idZBL: Zbl 06537701
idMR: MR3441326
DOI: 10.1007/s10587-015-0218-x
.
Date available: 2016-01-13T09:05:27Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144783
.
Reference: [1] Deng, G., Yuan, P.: On the symmetric digraphs from powers modulo $n$.Discrete Math. 312 (2012), 720-728. Zbl 1238.05104, MR 2872913, 10.1016/j.disc.2011.11.007
Reference: [2] Kramer-Miller, J.: Structural properties of power digraphs modulo $n$.Mathematical Sciences Technical Reports (MSTR) (2009), 11 pages, http://scholar.rose-hulman.edu/math\_mstr/11.
Reference: [3] Křížek, M., Luca, F., Somer, L.: 17 Lectures on Fermat Numbers: From Number Theory to Geometry.CMS Books in Mathematics/Ouvrages de Mathématiques de la SMC 9 Springer, New York (2001). Zbl 1010.11002, MR 1866957
Reference: [4] Somer, L., Křížek, M.: The structure of digraphs associated with the congruence $x^k\equiv y\pmod n$.Czech. Math. J. 61 (2011), 337-358. Zbl 1249.11006, MR 2905408, 10.1007/s10587-011-0079-x
Reference: [5] Somer, L., Křížek, M.: On symmetric digraphs of the congruence $x^k\equiv y\pmod n$.Discrete Math. 309 (2009), 1999-2009. MR 2510326, 10.1016/j.disc.2008.04.009
Reference: [6] Somer, L., Křížek, M.: On semiregular digraphs of the congruence $x^k\equiv y\pmod n$.Commentat. Math. Univ. Carol. 48 (2007), 41-58. MR 2338828
Reference: [7] Wilson, B.: Power digraphs modulo $n$.Fibonacci Q. 36 (1998), 229-239. Zbl 0936.05049, MR 1627384
.

Files

Files Size Format View
CzechMathJ_65-2015-4_6.pdf 363.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo