Title:
|
On $R$-conjugate-permutability of Sylow subgroups (English) |
Author:
|
Zhao, Xianhe |
Author:
|
Chen, Ruifang |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
1 |
Year:
|
2016 |
Pages:
|
111-117 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
A subgroup $H$ of a finite group $G$ is said to be conjugate-permutable if $HH^{g}=H^{g}H$ for all $g\in G$. More generaly, if we limit the element $g$ to a subgroup $R$ of $G$, then we say that the subgroup $H$ is $R$-conjugate-permutable. By means of the $R$-conjugate-permutable subgroups, we investigate the relationship between the nilpotence of $G$ and the $R$-conjugate-permutability of the Sylow subgroups of $A$ and $B$ under the condition that $G=AB$, where $A$ and $B$ are subgroups of $G$. Some results known in the literature are improved and generalized in the paper. (English) |
Keyword:
|
$R$-conjugate-permutable subgroup |
Keyword:
|
nilpotent group |
Keyword:
|
quasinilpotent group |
Keyword:
|
Sylow subgroup |
MSC:
|
20D10 |
MSC:
|
20D20 |
idZBL:
|
Zbl 06587877 |
idMR:
|
MR3483226 |
DOI:
|
10.1007/s10587-016-0243-4 |
. |
Date available:
|
2016-04-07T14:59:17Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/144885 |
. |
Reference:
|
[1] Baer, R.: Group elements of prime power index.Trans. Am. Math. Soc. 75 (1953), 20-47. MR 0055340, 10.1090/S0002-9947-1953-0055340-0 |
Reference:
|
[2] Ballester-Bolinches, A., Esteban-Romero, R., Asaad, M.: Products of Finite Groups.De Gruyter Expositions in Mathematics 53 Walter de Gruyter, Berlin (2010). Zbl 1206.20019, MR 2762634 |
Reference:
|
[3] Foguel, T.: Conjugate-permutable subgroups.J. Algebra 191 (1997), 235-239. MR 1444498, 10.1006/jabr.1996.6924 |
Reference:
|
[4] Huppert, B., Blackburn, N.: Finite Groups. III.Grundlehren der Mathematischen Wissenschaften 243 Springer, Berlin (1982). MR 0662826, 10.1007/978-3-642-67997-1_1 |
Reference:
|
[5] Kegel, O. H.: Produkte nilpotenter Gruppen.Arch. Math. (Basel) 12 (1961), 90-93 German. MR 0133365, 10.1007/BF01650529 |
Reference:
|
[6] Murashka, V. I.: On partially conjugate-permutable subgroups of finite groups.Probl. Fiz. Mat. Tekh. 14 (2013), 74-78. |
Reference:
|
[7] Robinson, D. J. S.: A Course in the Theory of Groups.Graduate Texts in Mathematics 80 Springer, Berlin (1982). Zbl 0483.20001, MR 0648604, 10.1007/978-1-4684-0128-8 |
Reference:
|
[8] Wielandt, H.: Über die Existenz von Normalteilern in endlichen Gruppen.Math. Nachr. 18 German (1958), 274-280. MR 0103228, 10.1002/mana.19580180130 |
. |