Previous |  Up |  Next

Article

Title: Automorphisms and generalized skew derivations which are strong commutativity preserving on polynomials in prime and semiprime rings (English)
Author: de Filippis, Vincenzo
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 1
Year: 2016
Pages: 271-292
Summary lang: English
.
Category: math
.
Summary: Let $R$ be a prime ring of characteristic different from 2, $Q_r$ its right Martindale quotient ring and $C$ its extended centroid. Suppose that $F$, $G$ are generalized skew derivations of $R$ with the same associated automorphism $\alpha $, and $p(x_1,\ldots ,x_n)$ is a non-central polynomial over $C$ such that $$ [F(x),\alpha (y)]=G([x,y]) $$ for all $x,y \in \{p(r_1,\ldots ,r_n)\colon r_1,\ldots ,r_n \in R\}$. Then there exists $\lambda \in C$ such that $F(x)=G(x)=\lambda \alpha (x)$ for all $x\in R$. (English)
Keyword: generalized skew derivation
Keyword: prime ring
MSC: 16N60
MSC: 16W25
idZBL: Zbl 06587889
idMR: MR3483238
DOI: 10.1007/s10587-016-0255-0
.
Date available: 2016-04-07T15:13:22Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/144888
.
Reference: [1] Arga{ç}, N., Carini, L., Filippis, V. De: An Engel condition with generalized derivations on Lie ideals.Taiwanese J. Math. 12 (2008), 419-433. Zbl 1153.16029, MR 2402125, 10.11650/twjm/1500574164
Reference: [2] Brešar, M., Miers, C. R.: Strong commutativity preserving maps of semiprime rings.Can. Math. Bull. 37 (1994), 457-460. MR 1303671, 10.4153/CMB-1994-066-4
Reference: [3] Chang, J.-C.: On the identity $h(x)=af(x)+g(x)b$.Taiwanese J. Math. 7 (2003), 103-113. Zbl 1048.16018, MR 1961042, 10.11650/twjm/1500407520
Reference: [4] Chuang, C.-L.: Identities with skew derivations.J. Algebra 224 (2000), 292-335. MR 1739582, 10.1006/jabr.1999.8052
Reference: [5] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms. II.J. Algebra 160 (1993), 130-171. MR 1237081, 10.1006/jabr.1993.1181
Reference: [6] Chuang, C.-L.: Differential identities with automorphisms and antiautomorphisms. I.J. Algebra 149 (1992), 371-404. MR 1172436, 10.1016/0021-8693(92)90023-F
Reference: [7] Chuang, C.-L.: GPIs having coefficients in Utumi quotient rings.Proc. Am. Math. Soc. 103 (1988), 723-728. Zbl 0656.16006, MR 0947646, 10.1090/S0002-9939-1988-0947646-4
Reference: [8] Chuang, C.-L.: The additive subgroup generated by a polynomial.Isr. J. Math. 59 (1987), 98-106. MR 0923664, 10.1007/BF02779669
Reference: [9] Chuang, C.-L., Lee, T.-K.: Identities with a single skew derivation.J. Algebra 288 (2005), 59-77. Zbl 1073.16021, MR 2138371, 10.1016/j.jalgebra.2003.12.032
Reference: [10] Chuang, C.-L., Lee, T.-K.: Rings with annihilator conditions on multilinear polynomials.Chin. J. Math. 24 (1996), 177-185. MR 1401645
Reference: [11] Filippis, V. De: A product of two generalized derivations on polynomials in prime rings.Collect. Math. 61 (2010), 303-322. Zbl 1232.16029, MR 2732374, 10.1007/BF03191235
Reference: [12] Vincenzo, O. M. Di: On the $n$th centralizer of a Lie ideal.Boll. Unione Mat. Ital., VII. Ser. 3-A (1989), 77-85. MR 0990089
Reference: [13] Faith, C., Utumi, Y.: On a new proof of Litoff's theorem.Acta Math. Acad. Sci. Hung. 14 (1963), 369-371. Zbl 0147.28602, MR 0155858, 10.1007/BF01895723
Reference: [14] Herstein, I. N.: Topics in Ring Theory.Chicago Lectures in Mathematics The University of Chicago Press, Chicago (1969). Zbl 0232.16001, MR 0271135
Reference: [15] Jacobson, N.: PI-Algebras: An Introduction.Lecture Notes in Mathematics 441 Springer, Berlin (1975). MR 0369421, 10.1007/BFb0070023
Reference: [16] Jacobson, N.: Structure of Rings.American Mathematical Society Colloquium Publications 37 AMS, Providence (1956). Zbl 0073.02002, MR 0081264, 10.1090/coll/037
Reference: [17] Lanski, C., Montgomery, S.: Lie structure of prime rings of characteristic 2.Pac. J. Math. 42 (1972), 117-136. MR 0323839, 10.2140/pjm.1972.42.117
Reference: [18] Lin, J.-S., Liu, C.-K.: Strong commutativity preserving maps on Lie ideals.Linear Algebra Appl. 428 (2008), 1601-1609. Zbl 1141.16021, MR 2388643
Reference: [19] Liu, C.-K.: Strong commutativity preserving generalized derivations on right ideals.Monatsh. Math. 166 (2012), 453-465. Zbl 1250.16029, MR 2925149, 10.1007/s00605-010-0281-1
Reference: [20] Liu, C.-K., Liau, P.-K.: Strong commutativity preserving generalized derivations on Lie ideals.Linear Multilinear Algebra 59 (2011), 905-915. Zbl 1230.16033, MR 2826060, 10.1080/03081087.2010.535819
Reference: [21] Ma, J., Xu, X. W., Niu, F. W.: Strong commutativity-preserving generalized derivations on semiprime rings.Acta Math. Sin., Engl. Ser. 24 (2008), 1835-1842. Zbl 1169.16020, MR 2453063, 10.1007/s10114-008-7445-0
Reference: [22] III, W. S. Martindale: Prime rings satisfying a generalized polynomial identity.J. Algebra 12 (1969), 576-584. MR 0238897, 10.1016/0021-8693(69)90029-5
Reference: [23] Posner, E. C.: Derivations in prime rings.Proc. Am. Math. Soc. 8 (1958), 1093-1100. Zbl 0082.03003, MR 0095863, 10.1090/S0002-9939-1957-0095863-0
Reference: [24] Wong, T.-L.: Derivations with power-central values on multilinear polynomials.Algebra Colloq. 3 (1996), 369-378. Zbl 0864.16031, MR 1422975
.

Files

Files Size Format View
CzechMathJ_66-2016-1_23.pdf 315.2Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo