Title:
|
A short note on $L^q$ theory for Stokes problem with a pressure-dependent viscosity (English) |
Author:
|
Mácha, Václav |
Language:
|
English |
Journal:
|
Czechoslovak Mathematical Journal |
ISSN:
|
0011-4642 (print) |
ISSN:
|
1572-9141 (online) |
Volume:
|
66 |
Issue:
|
2 |
Year:
|
2016 |
Pages:
|
317-329 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study higher local integrability of a weak solution to the steady Stokes problem. We consider the case of a pressure- and shear-rate-dependent viscosity, i.e., the elliptic part of the Stokes problem is assumed to be nonlinear and it depends on $p$ and on the symmetric part of a gradient of $u$, namely, it is represented by a stress tensor $T(Du,p):=\nu (p,|D|^2)D$ which satisfies $r$-growth condition with $r\in (1,2]$. In order to get the main result, we use Calderón-Zygmund theory and the method which was presented for example in the paper Caffarelli, Peral (1998). (English) |
Keyword:
|
Stokes problem |
Keyword:
|
$L^q$ theory |
Keyword:
|
pressure-dependent viscosity |
MSC:
|
35B65 |
MSC:
|
35Q35 |
MSC:
|
76D03 |
idZBL:
|
Zbl 06604469 |
idMR:
|
MR3519604 |
DOI:
|
10.1007/s10587-016-0258-x |
. |
Date available:
|
2016-06-16T12:39:43Z |
Last updated:
|
2020-07-03 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145726 |
. |
Reference:
|
[1] Amrouche, C., Girault, V.: Decomposition of vector spaces and application to the Stokes problem in arbitrary dimension.Czech. Math. J. 44 (1994), 109-140. Zbl 0823.35140, MR 1257940 |
Reference:
|
[2] Bridgman, P. W.: The Physics of High Pressure.MacMillan, New York (1931). |
Reference:
|
[3] Bulíček, M., Fišerová, V.: Existence theory for steady flows of fluids with pressure and shear rate dependent viscosity, for low values of the power-law index.Z. Anal. Anwend. 28 (2009), 349-371. Zbl 1198.35174, MR 2506365, 10.4171/ZAA/1389 |
Reference:
|
[4] Bulíček, M., Kaplický, P.: Incompressible fluids with shear rate and pressure dependent viscosity: regularity of steady planar flows.Discrete Contin. Dyn. Syst. Ser. S 1 (2008), 41-50. Zbl 1153.35314, MR 2375580 |
Reference:
|
[5] Bulíček, M., Málek, J., Rajagopal, K. R.: Analysis of the flows of incompressible fluids with pressure dependent viscosity fulfilling $\nu(p,\cdot)\rightarrow +\infty$ as $p\rightarrow +\infty$.Czech. Math. J. 59 (2009), 503-528. MR 2532387, 10.1007/s10587-009-0034-2 |
Reference:
|
[6] Caffarelli, L. A., Peral, I.: On $W^{1,p}$ estimates for elliptic equations in divergence form.Commun. Pure Appl. Math. 51 (1998), 1-21. Zbl 0906.35030, MR 1486629, 10.1002/(SICI)1097-0312(199801)51:1<1::AID-CPA1>3.0.CO;2-G |
Reference:
|
[7] Diening, L., Ettwein, F.: Fractional estimates for non-differentiable elliptic systems with general growth.Forum Math. 20 (2008), 523-556. Zbl 1188.35069, MR 2418205, 10.1515/FORUM.2008.027 |
Reference:
|
[8] Diening, L., Kaplický, P.: $L^q$ theory for a generalized Stokes system.Manuscr. Math. 141 (2013), 333-361. Zbl 1263.35175, MR 3042692, 10.1007/s00229-012-0574-x |
Reference:
|
[9] Diening, L., Růžička, M., Schumacher, K.: A decomposition technique for John domains.Ann. Acad. Sci. Fenn. Math. 35 (2010), 87-114. Zbl 1194.26022, MR 2643399, 10.5186/aasfm.2010.3506 |
Reference:
|
[10] Franta, M., Málek, J., Rajagopal, K. R.: On steady flows of fluids with pressure- and shear-dependent viscosities.Proc. R. Soc. Lond., Ser. A, Math. Phys. Eng. Sci. (2005), 461 651-670. Zbl 1145.76311, MR 2121929 |
Reference:
|
[11] Gazzola, F., Secchi, P.: Some results about stationary Navier-Stokes equations with a pressure-dependent viscosity.Navier-Stokes Equations: Theory and Numerical Methods, Varenna, 1997 R. Salvi 31-37 Pitman Res. Notes Math. Ser. 388 Longman, Harlow (1998). Zbl 0940.35156, MR 1773582 |
Reference:
|
[12] Giusti, E.: Metodi Diretti Nel Calcolo Delle Variazioni.Italian Unione Matematica Italiana, Bologna (1994). Zbl 0942.49002, MR 1707291 |
Reference:
|
[13] Iwaniec, T.: On $L^p$-integrability in PDE's and quasiregular mappings for large exponents.Ann. Acad. Sci. Fenn. Ser. A I, Math. 7 (1982), 301-322. Zbl 0505.30011, MR 0686647, 10.5186/aasfm.1982.0719 |
Reference:
|
[14] Knauf, S., Frei, S., Richter, T., Rannacher, R.: Towards a complete numerical description of lubricant film dynamics in ball bearings.Comput. Mech. 53 (2014), 239-255. MR 3158820, 10.1007/s00466-013-0904-1 |
Reference:
|
[15] Lanzendörfer, M.: On steady inner flows of an incompressible fluid with the viscosity depending on the pressure and the shear rate.Nonlinear Anal., Real World Appl. 10 (2009), 1943-1954. Zbl 1163.76335, MR 2508405 |
Reference:
|
[16] Lanzendörfer, M.: Numerical Simulations of the Flow in the Journal Bearing. Master's Thesis.Charles University in Prague, Faculty of Mathematics and Physics (2003). |
Reference:
|
[17] Lanzendörfer, M., Stebel, J.: On pressure boundary conditions for steady flows of incompressible fluids with pressure and shear rate dependent viscosities.Appl. Math., Praha 56 (2011), 265-285. Zbl 1224.35347, MR 2800578, 10.1007/s10492-011-0016-1 |
Reference:
|
[18] Mácha, V.: Partial regularity of solution to generalized Navier-Stokes problem.Cent. Eur. J. Math. 12 (2014), 1460-1483. Zbl 1303.35058, MR 3224012 |
Reference:
|
[19] Mácha, V., Tichý, J.: Higher integrability of solution to generalized Stokes system under perfect slip boundary conditions.J. Math. Fluid Mech. 16 (2014), 823-845. MR 3267551, 10.1007/s00021-014-0190-5 |
Reference:
|
[20] Málek, J.: Mathematical properties of flows of incompressible power-law-like fluids that are described by implicit constitutive relations.Electron. Trans. Numer. Anal. 31 (2008), 110-125. Zbl 1182.35182, MR 2569596 |
Reference:
|
[21] Málek, J., Mingione, G., Stará, J.: Fluids with Pressure Dependent Viscosity, Partial Regularity of Steady Flows.F. Dumortier, et al. Equadiff 2003. Proc. Int. Conf. Differential Equations World Sci. Publ., Hackensack 380-385 (2005). Zbl 1101.76021, MR 2185057 |
Reference:
|
[22] Málek, J., Nečas, J., Rajagopal, K. R.: Global analysis of the flows of fluids with pressure-dependent viscosities.Arch. Ration. Mech. Anal. 165 (2002), 243-269. Zbl 1022.76011, MR 1941479, 10.1007/s00205-002-0219-4 |
Reference:
|
[23] Roubíček, T.: Nonlinear Partial Differential Equations with Applications.International Series of Numerical Mathematics 153 Birkhäuser, Basel (2005). Zbl 1087.35002, MR 2176645 |
. |