Previous |  Up |  Next

Article

Title: Linear natural operators lifting $p$-vectors to tensors of type $(q,0)$ on Weil bundles (English)
Author: Dębecki, Jacek
Language: English
Journal: Czechoslovak Mathematical Journal
ISSN: 0011-4642 (print)
ISSN: 1572-9141 (online)
Volume: 66
Issue: 2
Year: 2016
Pages: 511-525
Summary lang: English
.
Category: math
.
Summary: We give a classification of all linear natural operators transforming $p$-vectors (i.e., skew-symmetric tensor fields of type $(p,0)$) on $n$-dimensional manifolds $M$ to tensor fields of type $(q,0)$ on $T^AM$, where $T^A$ is a Weil bundle, under the condition that $p\ge 1$, $n\ge p$ and $n\ge q$. The main result of the paper states that, roughly speaking, each linear natural operator lifting $p$-vectors to tensor fields of type $(q,0)$ on $T^A$ is a sum of operators obtained by permuting the indices of the tensor products of linear natural operators lifting $p$-vectors to tensor fields of type $(p,0)$ on $T^A$ and canonical tensor fields of type $(q-p,0)$ on $T^A$. (English)
Keyword: natural operator
Keyword: Weil bundle
MSC: 58A32
idZBL: Zbl 06604483
idMR: MR3519618
DOI: 10.1007/s10587-016-0272-z
.
Date available: 2016-06-16T12:59:34Z
Last updated: 2020-07-03
Stable URL: http://hdl.handle.net/10338.dmlcz/145740
.
Reference: [1] Dębecki, J.: Canonical tensor fields of type {$(p,0)$} on Weil bundles.Ann. Pol. Math. 88 (2006), 271-278. Zbl 1114.58004, MR 2260406, 10.4064/ap88-3-6
Reference: [2] Dębecki, J.: Linear liftings of skew-symmetric tensor fields to Weil bundles.Czech. Math. J. 55 (2005), 809-816. Zbl 1081.53015, MR 2153104, 10.1007/s10587-005-0067-0
Reference: [3] Eck, D. J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133-140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [4] Grabowski, J., Urba{ń}ski, P.: Tangent lifts of Poisson and related structures.J. Phys. A, Math. Gen. 28 (1995), 6743-6777. Zbl 0872.58028, MR 1381143, 10.1088/0305-4470/28/23/024
Reference: [5] Kainz, G., Michor, P. W.: Natural transformations in differential geometry.Czech. Math. J. 37 (1987), 584-607. Zbl 0654.58001, MR 0913992
Reference: [6] Kol{á}{ř}, I.: Weil Bundles as Generalized Jet Spaces.Handbook of Global Analysis Elsevier, Amsterdam (2008), 625-664 D. Krupka et al. Zbl 1236.58010, MR 2389643
Reference: [7] Kol{á}{ř}, I.: On the natural operators on vector fields.Ann. Global Anal. Geom. 6 (1988), 109-117. Zbl 0678.58003, MR 0982760, 10.1007/BF00133034
Reference: [8] Kolář, I., Michor, P. W., Slovák, J.: Natural Operations in Differential Geometry.(corrected electronic version) Springer, Berlin (1993). MR 1202431
Reference: [9] Luciano, O. O.: Categories of multiplicative functors and Weil's infinitely near points.Nagoya Math. J. 109 (1988), 69-89. Zbl 0661.58007, MR 0931952, 10.1017/S0027763000002774
Reference: [10] Mikulski, W. M.: The linear natural operators lifting 2-vector fields to some Weil bundles.Note Mat. 19 (1999), 213-217. Zbl 1008.58004, MR 1816875
.

Files

Files Size Format View
CzechMathJ_66-2016-2_17.pdf 304.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo