Previous |  Up |  Next

Article

Title: Upgrading Probability via Fractions of Events (English)
Author: Frič, Roman
Author: Papčo, Martin
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 1
Year: 2016
Pages: 29-41
Summary lang: English
.
Category: math
.
Summary: The influence of “Grundbegriffe” by A. N. Kolmogorov (published in 1933) on education in the area of probability and its impact on research in stochastics cannot be overestimated. We would like to point out three aspects of the classical probability theory “calling for“ an upgrade: (i)~classical random events are black-and-white (Boolean); (ii)~classical random variables do not model quantum phenomena; (iii)~basic maps (probability measures and observables – dual maps to random variables) have very different “mathematical nature”. Accordingly, we propose an upgraded probability theory based on Łukasiewicz operations (multivalued logic) on events, elementary category theory, and covering the classical probability theory as a special case. The upgrade can be compared to replacing calculations with integers by calculations with rational (and real) numbers. Namely, to avoid the three objections, we embed the classical (Boolean) random events (represented by the $\{0,1\}$-valued indicator functions of sets) into upgraded random events (represented by measurable $[0,1]$-valued functions), the minimal domain of probability containing “fractions” of classical random events, and we upgrade the notions of probability measure and random variable. (English)
Keyword: Classical probability theory
Keyword: upgrading
Keyword: quantum phenomenon
Keyword: category theory
Keyword: D-poset of fuzzy sets
Keyword: Łukasiewicz tribe
Keyword: observable
Keyword: statistical map
Keyword: duality
MSC: 60A05
MSC: 60A86
idZBL: Zbl 06670230
idMR: MR3546805
.
Date available: 2016-08-26T11:19:22Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145804
.
Reference: [1] Adámek, J.: Theory of Mathematical Structures.1983, Reidel, Dordrecht, MR 0735079
Reference: [2] Bugajski, S.: Statistical maps I. Basic properties.Math. Slovaca, 51, 3, 2001, 321-342, Zbl 1088.81021, MR 1842320
Reference: [3] Bugajski, S.: Statistical maps II. Operational random variables.Math. Slovaca, 51, 3, 2001, 343-361, Zbl 1088.81022, MR 1842321
Reference: [4] Chovanec, F., Frič, R.: States as morphisms.Internat. J. Theoret. Phys., 49, 12, 2010, 3050-3060, Zbl 1204.81011, MR 2738063, 10.1007/s10773-009-0234-4
Reference: [5] Chovanec, F., Kôpka, F.: D-posets.Handbook of Quantum Logic and Quantum Structures: Quantum Structures, 2007, 367-428, Elsevier, Amsterdam, Edited by K. Engesser, D. M. Gabbay and D. Lehmann. Zbl 1139.81005, MR 2408886
Reference: [6] Dvurečenskij, A., Pulmannová, S.: New Trends in Quantum Structures.2000, Kluwer Academic Publ. and Ister Science, Dordrecht and Bratislava, MR 1861369
Reference: [7] Frič, R.: Łukasiewicz tribes are absolutely sequentially closed bold algebras.Czechoslovak Math. J., 52, 2002, 861-874, Zbl 1016.28013, MR 1940065, 10.1023/B:CMAJ.0000027239.28381.31
Reference: [8] Frič, R.: Remarks on statistical maps and fuzzy (operational) random variables.Tatra Mt. Math. Publ, 30, 2005, 21-34, Zbl 1150.60304, MR 2190245
Reference: [9] Frič, R.: Extension of domains of states.Soft Comput., 13, 2009, 63-70, Zbl 1166.28006, 10.1007/s00500-008-0293-0
Reference: [10] Frič, R.: On D-posets of fuzzy sets.Math. Slovaca, 64, 2014, 545-554, Zbl 1332.06005, MR 3227755, 10.2478/s12175-014-0224-8
Reference: [11] Frič, R-, Papčo, M.: A categorical approach to probability.Studia Logica, 94, 2010, 215-230, Zbl 1213.60021, MR 2602573, 10.1007/s11225-010-9232-z
Reference: [12] Frič, R., Papčo, M.: Fuzzification of crisp domains.Kybernetika, 46, 2010, 1009-1024, Zbl 1219.60006, MR 2797424
Reference: [13] Frič, R., Papčo, M.: On probability domains.Internat. J. Theoret. Phys., 49, 2010, 3092-3100, Zbl 1204.81012, MR 2738067, 10.1007/s10773-009-0162-3
Reference: [14] Frič, R., Papčo, M.: On probability domains II.Internat. J. Theoret. Phys., 50, 2011, 3778-3786, Zbl 1254.60009, MR 2860035, 10.1007/s10773-011-0855-2
Reference: [15] Frič, R., Papčo, M.: On probability domains III.Internat. J. Theoret. Phys., 54, 2015, 4237-4246, Zbl 1329.81095, MR 3418298, 10.1007/s10773-014-2471-4
Reference: [16] Goguen, J. A.: A categorical manifesto.Math. Struct. Comp. Sci., 1, 1991, 49-67, Zbl 0747.18001, MR 1108804, 10.1017/S0960129500000050
Reference: [17] Gudder, S.: Fuzzy probability theory.Demonstratio Math., 31, 1998, 235-254, Zbl 0984.60001, MR 1623780
Reference: [18] Kolmogorov, A. N.: Grundbegriffe der wahrscheinlichkeitsrechnung.1933, Springer, Berlin, Zbl 0007.21601, MR 0494348
Reference: [19] Kôpka, F., Chovanec, F.: D-posets.Math. Slovaca, 44, 1994, 21-34, MR 1290269
Reference: [20] Kuková, M., Navara, M.: What observables can be.Theory of Functions, Its Applications, and Related Questions, Transactions of the Mathematical Institute of N.I. Lobachevsky 46, 2013, 62-70, Kazan Federal University,
Reference: [21] Loève, M.: Probability theory.1963, D. Van Nostrand, Inc., Princeton, New Jersey, Zbl 0108.14202, MR 0203748
Reference: [22] Mesiar, R.: Fuzzy sets and probability theory.Tatra Mt. Math. Publ., 1, 1992, 105-123, Zbl 0790.60005, MR 1230469
Reference: [23] Navara, M.: Triangular norms and measures of fuzzy sets.Logical, Algebraic, Analytic, and Probabilistic Aspects of Triangular Norms, 2005, 345-390, Elsevier, Zbl 1073.28015, MR 2165242
Reference: [24] Navara, M.: Probability theory of fuzzy events.Fourth Conference of the European Society for Fuzzy Logic and Technology and 11 Rencontres Francophones sur la Logique Floue et ses Applications, 2005, 325-329, Universitat Polit ecnica de Catalunya, Barcelona, Spain,
Reference: [25] Navara, M.: Tribes revisited.30th Linz Seminar on Fuzzy Set Theory: The Legacy of 30 Seminars, Where Do We Stand and Where Do We Go?, 2009, 81-84, Johannes Kepler University, Linz, Austria,
Reference: [26] Papčo, M.: On measurable spaces and measurable maps.Tatra Mt. Math. Publ., 28, 2004, 125-140, Zbl 1112.06005, MR 2086282
Reference: [27] Papčo, M.: On fuzzy random variables: examples and generalizations.Tatra Mt. Math. Publ., 30, 2005, 175-185, Zbl 1152.60302, MR 2190258
Reference: [28] Papčo, M.: On effect algebras.Soft Comput., 12, 2008, 373-379, Zbl 1127.06003, 10.1007/s00500-007-0171-1
Reference: [29] Papčo, M.: Fuzzification of probabilistic objects.8th Conference of the European Society for Fuzzy Logic and Technology (EUSFLAT 2013), doi:10.2991/eusat.2013.10, 2013, 67-71, 10.2991/eusat.2013.10
Reference: [30] Riečan, B., Mundici, D.: Probability on MV-algebras.Handbook of Measure Theory, Vol. II, 2002, 869-910, North-Holland, Amsterdam, Zbl 1017.28002, MR 1954631
Reference: [31] Riečan, B., Neubrunn, T.: Integral, Measure, and Ordering.1997, Kluwer Acad. Publ., Dordrecht-Boston-London, MR 1489521
Reference: [32] Zadeh, L. A.: Probability measures of fuzzy events.J. Math. Anal. Appl., 23, 1968, 421-427, Zbl 0174.49002, MR 0230569, 10.1016/0022-247X(68)90078-4
Reference: [33] Zadeh, L. A.: Fuzzy probabilities.Inform. Process. Manag., 19, 1984, 148-153, Zbl 0543.60007
.

Files

Files Size Format View
ActaOstrav_24-2016-1_4.pdf 596.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo