| Title:
             | 
Diophantine Approximations of Infinite Series and Products (English) | 
| Author:
             | 
Kolouch, Ondřej | 
| Author:
             | 
Novotný, Lukáš | 
| Language:
             | 
English | 
| Journal:
             | 
Communications in Mathematics | 
| ISSN:
             | 
1804-1388 | 
| Volume:
             | 
24 | 
| Issue:
             | 
1 | 
| Year:
             | 
2016 | 
| Pages:
             | 
71-82 | 
| Summary lang:
             | 
English | 
| . | 
| Category:
             | 
math | 
| . | 
| Summary:
             | 
This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets. (English) | 
| Keyword:
             | 
Infinite products | 
| Keyword:
             | 
irrationality | 
| Keyword:
             | 
linear independence | 
| Keyword:
             | 
expressible set | 
| MSC:
             | 
11J72 | 
| MSC:
             | 
11J81 | 
| MSC:
             | 
11K55 | 
| idZBL:
             | 
Zbl 06670232 | 
| idMR:
             | 
MR3546807 | 
| . | 
| Date available:
             | 
2016-08-26T11:22:56Z | 
| Last updated:
             | 
2018-01-10 | 
| Stable URL:
             | 
http://hdl.handle.net/10338.dmlcz/145806 | 
| . | 
| Reference:
             | 
[1] Badea, C.: The irrationality of certain infinite products.Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8,  Zbl 0625.10027, MR 0911859 | 
| Reference:
             | 
[2] Badea, C.: The irrationality of certain infinite series.Glasgow Mathematical Journal, 29, 2, 1987, 221-228,  Zbl 0629.10027, MR 0901668, 10.1017/S0017089500006868 | 
| Reference:
             | 
[3] Duverney, D.: Sur les séries de nombres rationnels à convergence rapide.Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556,  Zbl 0940.11027, MR 1680014 | 
| Reference:
             | 
[4] Erdős, P.: Problem 4321.The American Mathematical Monthly, 64, 7, 1950, | 
| Reference:
             | 
[5] Erdős, P.: Some Problems and Results on the Irrationality of the Sum of Infinite Series.Journal of Mathematical Sciences, 10, 1975, 1-7,  Zbl 0372.10023, MR 0539489 | 
| Reference:
             | 
[6] Erdős, P.: Erdős problem no. 6.1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995, | 
| Reference:
             | 
[7] Erdős, P., Straus, E. G.: On the irrationality of certain Ahmes series.Journal of Indian Mathematical Society, 27, 1964, 129-133,  MR 0175848 | 
| Reference:
             | 
[8] Hančl, J.: Expression of Real Numbers with the Help of Infinite Series.Acta Arithmetica, LIX, 2, 1991, 97-104,  Zbl 0701.11005, MR 1133951, 10.4064/aa-59-2-97-104 | 
| Reference:
             | 
[9] Hančl, J.: Criterion for Irrational Sequences.Journal of Number Theory, 43, 1, 1993, 88-92,  Zbl 0768.11021, MR 1200812, 10.1006/jnth.1993.1010 | 
| Reference:
             | 
[10] Hančl, J., Filip, F.: Irrationality Measure of Sequences.Hiroshima Math. J., 35, 2, 2005, 183-195,  Zbl 1087.11049, MR 2176050 | 
| Reference:
             | 
[11] Hančl, J., Kolouch, O.: Erdős' method for determining the irrationality of products.Bull. Aust. Math. Soc., 84, 3, 2011, 414-424,  Zbl 1242.11050, MR 2851961, 10.1017/S0004972711002309 | 
| Reference:
             | 
[12] Hančl, J., Kolouch, O.: Irrationality of infinite products.Publ. Math. Debrecen, 83, 4, 2013, 667-681,  Zbl 1299.11050, MR 3150834, 10.5486/PMD.2013.5676 | 
| Reference:
             | 
[13] Hančl, J., Kolouch, O., Novotný, L.: A Criterion for linear independence of infinite products.An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120,  Zbl 1349.11105, MR 3348703 | 
| Reference:
             | 
[14] Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J.: A note on the transcendence of infinite products.Czechoslovak Math. J., 62, 137, 2012, 613-623,  Zbl 1265.11078, MR 2984622, 10.1007/s10587-012-0053-2 | 
| Reference:
             | 
[15] Hančl, J., Korčeková, K., Novotný, L.: Productly linearly independent sequences.Stud. Sci. Math. Hung., 52, 2015, 350-370,  Zbl 1363.11073, MR 3402910 | 
| Reference:
             | 
[16] Hančl, J., Nair, R., Novotný, L.: On expressible sets of products.Period. Math. Hung., 69, 2, 2014, 199-206,  Zbl 1340.11067, MR 3278957, 10.1007/s10998-014-0058-8 | 
| Reference:
             | 
[17] Hančl, J., Nair, R., Novotný, L., Šustek, J.: On the Hausdorff dimension of the expressible set of certain sequences.Acta Arithmetica, 155, 1, 2012, 85-90,  Zbl 1272.11094, MR 2982430, 10.4064/aa155-1-8 | 
| Reference:
             | 
[18] Hančl, J., Nair, R., Šustek, J.: On the Lebesgue measure of the expressible set of certain sequences.Indag. Mathem., 17, 4, 2006, 567-581,  Zbl 1131.11048, MR 2320114, 10.1016/S0019-3577(06)81034-7 | 
| Reference:
             | 
[19] Hančl, J., Schinzel, A., Šustek, J.: On Expressible Sets of Geometric Sequences.Funct. Approx. Comment. Math., 38, 2008, 341-357,  Zbl 1215.11077, MR 2490089 | 
| Reference:
             | 
[20] Kurosawa, T., Tachiya, Y., Tanaka, T.: Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics).Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences,  MR 3178476 | 
| Reference:
             | 
[21] Luca, F., Tachiya, Y.: Algebraic independence of infinite products generated by Fibonacci and Lucas numbers.Hokkaido Math. J., 43, 2014, 1-20,  Zbl 1291.11103, MR 3178476, 10.14492/hokmj/1392906090 | 
| Reference:
             | 
[22] Nyblom, M. A.: On the construction of a family of transcendental valued infinite products.Fibonacci Quart., 42, 4, 2004, 353-358,  Zbl 1062.11048, MR 2110089 | 
| Reference:
             | 
[23] Sándor, J.: Some classes of irrational numbers.Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12,  Zbl 0544.10033, MR 0782282 | 
| Reference:
             | 
[24] Väänänen, K.: On the approximation of certain infinite products.Math. Scand., 73, 2, 1993, 197-208,  Zbl 0818.11028, MR 1269258, 10.7146/math.scand.a-12465 | 
| . |