Previous |  Up |  Next

Article

Title: Diophantine Approximations of Infinite Series and Products (English)
Author: Kolouch, Ondřej
Author: Novotný, Lukáš
Language: English
Journal: Communications in Mathematics
ISSN: 1804-1388
Volume: 24
Issue: 1
Year: 2016
Pages: 71-82
Summary lang: English
.
Category: math
.
Summary: This survey paper presents some old and new results in Diophantine approximations. Some of these results improve Erdos' results on~irrationality. The results in irrationality, transcendence and linear independence of infinite series and infinite products are put together with idea of irrational sequences and expressible sets. (English)
Keyword: Infinite products
Keyword: irrationality
Keyword: linear independence
Keyword: expressible set
MSC: 11J72
MSC: 11J81
MSC: 11K55
idZBL: Zbl 06670232
idMR: MR3546807
.
Date available: 2016-08-26T11:22:56Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145806
.
Reference: [1] Badea, C.: The irrationality of certain infinite products.Studia Univ. Babeş-Bolyai Math., 31, 3, 1986, 3-8, Zbl 0625.10027, MR 0911859
Reference: [2] Badea, C.: The irrationality of certain infinite series.Glasgow Mathematical Journal, 29, 2, 1987, 221-228, Zbl 0629.10027, MR 0901668, 10.1017/S0017089500006868
Reference: [3] Duverney, D.: Sur les séries de nombres rationnels à convergence rapide.Comptes Rendus de l'Académie des Sciences, Series I, Mathematics, 328, 7, 1999, 553-556, Zbl 0940.11027, MR 1680014
Reference: [4] Erdős, P.: Problem 4321.The American Mathematical Monthly, 64, 7, 1950,
Reference: [5] Erdős, P.: Some Problems and Results on the Irrationality of the Sum of Infinite Series.Journal of Mathematical Sciences, 10, 1975, 1-7, Zbl 0372.10023, MR 0539489
Reference: [6] Erdős, P.: Erdős problem no. 6.1995 Prague Midsummer Combinatorial Workshop, KAM Series (95-309) (ed. M. Klazar) (KAM MPP UK, Prague, 1995), 1995,
Reference: [7] Erdős, P., Straus, E. G.: On the irrationality of certain Ahmes series.Journal of Indian Mathematical Society, 27, 1964, 129-133, MR 0175848
Reference: [8] Hančl, J.: Expression of Real Numbers with the Help of Infinite Series.Acta Arithmetica, LIX, 2, 1991, 97-104, Zbl 0701.11005, MR 1133951, 10.4064/aa-59-2-97-104
Reference: [9] Hančl, J.: Criterion for Irrational Sequences.Journal of Number Theory, 43, 1, 1993, 88-92, Zbl 0768.11021, MR 1200812, 10.1006/jnth.1993.1010
Reference: [10] Hančl, J., Filip, F.: Irrationality Measure of Sequences.Hiroshima Math. J., 35, 2, 2005, 183-195, Zbl 1087.11049, MR 2176050
Reference: [11] Hančl, J., Kolouch, O.: Erdős' method for determining the irrationality of products.Bull. Aust. Math. Soc., 84, 3, 2011, 414-424, Zbl 1242.11050, MR 2851961, 10.1017/S0004972711002309
Reference: [12] Hančl, J., Kolouch, O.: Irrationality of infinite products.Publ. Math. Debrecen, 83, 4, 2013, 667-681, Zbl 1299.11050, MR 3150834, 10.5486/PMD.2013.5676
Reference: [13] Hančl, J., Kolouch, O., Novotný, L.: A Criterion for linear independence of infinite products.An. St. Univ. Ovidius Constanta, 23, 2, 2015, 107-120, Zbl 1349.11105, MR 3348703
Reference: [14] Hančl, J., Kolouch, O., Pulcerová, S., Štěpnička, J.: A note on the transcendence of infinite products.Czechoslovak Math. J., 62, 137, 2012, 613-623, Zbl 1265.11078, MR 2984622, 10.1007/s10587-012-0053-2
Reference: [15] Hančl, J., Korčeková, K., Novotný, L.: Productly linearly independent sequences.Stud. Sci. Math. Hung., 52, 2015, 350-370, Zbl 1363.11073, MR 3402910
Reference: [16] Hančl, J., Nair, R., Novotný, L.: On expressible sets of products.Period. Math. Hung., 69, 2, 2014, 199-206, Zbl 1340.11067, MR 3278957, 10.1007/s10998-014-0058-8
Reference: [17] Hančl, J., Nair, R., Novotný, L., Šustek, J.: On the Hausdorff dimension of the expressible set of certain sequences.Acta Arithmetica, 155, 1, 2012, 85-90, Zbl 1272.11094, MR 2982430, 10.4064/aa155-1-8
Reference: [18] Hančl, J., Nair, R., Šustek, J.: On the Lebesgue measure of the expressible set of certain sequences.Indag. Mathem., 17, 4, 2006, 567-581, Zbl 1131.11048, MR 2320114, 10.1016/S0019-3577(06)81034-7
Reference: [19] Hančl, J., Schinzel, A., Šustek, J.: On Expressible Sets of Geometric Sequences.Funct. Approx. Comment. Math., 38, 2008, 341-357, Zbl 1215.11077, MR 2490089
Reference: [20] Kurosawa, T., Tachiya, Y., Tanaka, T.: Algebraic independence of the values of certain infinite products and their derivatives related to Fibonacci and Lucas numbers (Analytic Number Theory: Number Theory through Approximation and Asymptotics).Proceedings of Institute for Mathematical Sciences, Kyoto University, 1874, 2014, 81-93, Research Institute for Mathematical Sciences, MR 3178476
Reference: [21] Luca, F., Tachiya, Y.: Algebraic independence of infinite products generated by Fibonacci and Lucas numbers.Hokkaido Math. J., 43, 2014, 1-20, Zbl 1291.11103, MR 3178476, 10.14492/hokmj/1392906090
Reference: [22] Nyblom, M. A.: On the construction of a family of transcendental valued infinite products.Fibonacci Quart., 42, 4, 2004, 353-358, Zbl 1062.11048, MR 2110089
Reference: [23] Sándor, J.: Some classes of irrational numbers.Studia Universitatis Babeş-Bolyai Mathematica, 29, 1984, 3-12, Zbl 0544.10033, MR 0782282
Reference: [24] Väänänen, K.: On the approximation of certain infinite products.Math. Scand., 73, 2, 1993, 197-208, Zbl 0818.11028, MR 1269258, 10.7146/math.scand.a-12465
.

Files

Files Size Format View
ActaOstrav_24-2016-1_6.pdf 371.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo