Previous |  Up |  Next

Article

Title: Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles (English)
Author: Ntyam, A.
Author: Wankap Nono, G. F.
Author: Ndombol, Bitjong
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 3
Year: 2016
Pages: 131-140
Summary lang: English
.
Category: math
.
Summary: We present some lifts (associated to a product preserving gauge bundle functor on vector bundles) of sections of the dual bundle of a vector bundle, some derivations and linear connections on vector bundles. (English)
Keyword: linear vector field
Keyword: Lie algebroid
Keyword: Weil bundle
Keyword: gauge bundle functor
Keyword: lift
MSC: 58A32
idZBL: Zbl 06644063
idMR: MR3553172
DOI: 10.5817/AM2016-3-131
.
Date available: 2016-09-20T11:55:01Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145827
.
Reference: [1] Eck, D.J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133–140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9
Reference: [2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1–14. Zbl 0813.53010, MR 1295815, 10.1017/S0027763000004931
Reference: [3] Kainz, G., Michor, P.W.: Natural transformations in differential geometry.Czechoslovak Math. J. 37 (1987), 584–607. Zbl 0654.58001, MR 0913992
Reference: [4] Kolář, I.: Covariant approach to natural transformations of Weil bundles.Comment. Math. Univ. Carolin. 27 (1986), 723–729. MR 0874666
Reference: [5] Kolář, I.: On the natural operators on vector fields.Ann. Global Anal. Geom. 9 (1988), 109–117. Zbl 0678.58003, MR 0982760, 10.1007/BF00133034
Reference: [6] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles.Differential Geom. Appl. 2 (1992), 1–16. Zbl 0783.53021, MR 1244453, 10.1016/0926-2245(92)90006-9
Reference: [7] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry.Springer Verlag Berlin, Heidelberg, 1993. Zbl 0782.53013, MR 1202431
Reference: [8] Luciano, O.O.: Categories of multiplicative functors and Morimoto’s conjecture.Institut Fourier, Laboratoire de Mathématiques, Grenoble (1986), Preprint No. 46.
Reference: [9] Mackenzie, K.C.H.: General theory of Liegroupoids and Lie algebroids.London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. MR 2157566
Reference: [10] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles.Colloquium Math. 90 (2) (2001), 277–285. Zbl 0988.58001, MR 1876848, 10.4064/cm90-2-7
Reference: [11] Mikulski, W.M., Kures, M.: Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles.Lobachevskii Journal of Mathematics 12 (2003), 51–61. Zbl 1026.58003, MR 1974543
Reference: [12] Ntyam, A., Kamga, J. Wouafo: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles.Ann. Pol. Math. 82 (3) (2003), 133–140. MR 2040808, 10.4064/ap82-3-4
Reference: [13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^A \circ \otimes _s^q \rightarrow \otimes _s^q \circ T^A$ over ${\operatorname{id}}_{T^{A}} $.Ann. Pol. Math. 96 (3) (2009), 295–301. MR 2534175
Reference: [14] Ntyam, A., Wankap, G.F., Ndombol, Bitjong: On lifts of some projectable vector fields associated to a product preserving gaugebundle functor on vector bundles.Arch. Math. (Brno) 50 (3) (2014), 161–169. MR 3263658, 10.5817/AM2014-3-161
Reference: [15] Slovák, J.: Prolongations of connections and sprays with respect to Weil functors.Proceedings of the 14th winter school on abstract analysis (Srní, 1986), Rend. Circ. Mat. Palermo (2) Suppl. No. 14 (1987), 143–155, 1987. Zbl 0644.53027, MR 0920852
Reference: [16] Weil, A.: Théorie des points proches sur les variétés différentiables.Topologie et Géométrie Différentielle, Colloque du CNRS, Strasbourg (CNRS, Paris, 1953) (1953), 97–110. Zbl 0053.24903
.

Files

Files Size Format View
ArchMathRetro_052-2016-3_1.pdf 536.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo