Title:
|
Some further results on lifts of linear vector fields related to product preserving gauge bundle functors on vector bundles (English) |
Author:
|
Ntyam, A. |
Author:
|
Wankap Nono, G. F. |
Author:
|
Ndombol, Bitjong |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
131-140 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We present some lifts (associated to a product preserving gauge bundle functor on vector bundles) of sections of the dual bundle of a vector bundle, some derivations and linear connections on vector bundles. (English) |
Keyword:
|
linear vector field |
Keyword:
|
Lie algebroid |
Keyword:
|
Weil bundle |
Keyword:
|
gauge bundle functor |
Keyword:
|
lift |
MSC:
|
58A32 |
idZBL:
|
Zbl 06644063 |
idMR:
|
MR3553172 |
DOI:
|
10.5817/AM2016-3-131 |
. |
Date available:
|
2016-09-20T11:55:01Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145827 |
. |
Reference:
|
[1] Eck, D.J.: Product-preserving functors on smooth manifolds.J. Pure Appl. Algebra 42 (1986), 133–140. Zbl 0615.57019, MR 0857563, 10.1016/0022-4049(86)90076-9 |
Reference:
|
[2] Gancarzewicz, J., Mikulski, W.M., Pogoda, Z.: Lifts of some tensor fields and connections to product preserving functors.Nagoya Math. J. 135 (1994), 1–14. Zbl 0813.53010, MR 1295815, 10.1017/S0027763000004931 |
Reference:
|
[3] Kainz, G., Michor, P.W.: Natural transformations in differential geometry.Czechoslovak Math. J. 37 (1987), 584–607. Zbl 0654.58001, MR 0913992 |
Reference:
|
[4] Kolář, I.: Covariant approach to natural transformations of Weil bundles.Comment. Math. Univ. Carolin. 27 (1986), 723–729. MR 0874666 |
Reference:
|
[5] Kolář, I.: On the natural operators on vector fields.Ann. Global Anal. Geom. 9 (1988), 109–117. Zbl 0678.58003, MR 0982760, 10.1007/BF00133034 |
Reference:
|
[6] Kolář, I., Modugno, M.: Torsions of connections on some natural bundles.Differential Geom. Appl. 2 (1992), 1–16. Zbl 0783.53021, MR 1244453, 10.1016/0926-2245(92)90006-9 |
Reference:
|
[7] Kolář, I., Slovák, J., Michor, P.W.: Natural operations in differential geometry.Springer Verlag Berlin, Heidelberg, 1993. Zbl 0782.53013, MR 1202431 |
Reference:
|
[8] Luciano, O.O.: Categories of multiplicative functors and Morimoto’s conjecture.Institut Fourier, Laboratoire de Mathématiques, Grenoble (1986), Preprint No. 46. |
Reference:
|
[9] Mackenzie, K.C.H.: General theory of Liegroupoids and Lie algebroids.London Mathematical Society Lecture Note Series, Cambridge University Press, Cambridge, 2005. MR 2157566 |
Reference:
|
[10] Mikulski, W.M.: Product preserving gauge bundle functors on vector bundles.Colloquium Math. 90 (2) (2001), 277–285. Zbl 0988.58001, MR 1876848, 10.4064/cm90-2-7 |
Reference:
|
[11] Mikulski, W.M., Kures, M.: Liftings of linear vector fields to product preserving gauge bundle functors on vector bundles.Lobachevskii Journal of Mathematics 12 (2003), 51–61. Zbl 1026.58003, MR 1974543 |
Reference:
|
[12] Ntyam, A., Kamga, J. Wouafo: New versions of curvature and torsion formulas for the complete lifting of a linear connection to Weil bundles.Ann. Pol. Math. 82 (3) (2003), 133–140. MR 2040808, 10.4064/ap82-3-4 |
Reference:
|
[13] Ntyam, A., Mba, A.: On natural vector bundle morphisms $T^A \circ \otimes _s^q \rightarrow \otimes _s^q \circ T^A$ over ${\operatorname{id}}_{T^{A}} $.Ann. Pol. Math. 96 (3) (2009), 295–301. MR 2534175 |
Reference:
|
[14] Ntyam, A., Wankap, G.F., Ndombol, Bitjong: On lifts of some projectable vector fields associated to a product preserving gaugebundle functor on vector bundles.Arch. Math. (Brno) 50 (3) (2014), 161–169. MR 3263658, 10.5817/AM2014-3-161 |
Reference:
|
[15] Slovák, J.: Prolongations of connections and sprays with respect to Weil functors.Proceedings of the 14th winter school on abstract analysis (Srní, 1986), Rend. Circ. Mat. Palermo (2) Suppl. No. 14 (1987), 143–155, 1987. Zbl 0644.53027, MR 0920852 |
Reference:
|
[16] Weil, A.: Théorie des points proches sur les variétés différentiables.Topologie et Géométrie Différentielle, Colloque du CNRS, Strasbourg (CNRS, Paris, 1953) (1953), 97–110. Zbl 0053.24903 |
. |