Title:
|
Distinguished connections on $(J^{2}=\pm 1)$-metric manifolds (English) |
Author:
|
Etayo, Fernando |
Author:
|
Santamaría, Rafael |
Language:
|
English |
Journal:
|
Archivum Mathematicum |
ISSN:
|
0044-8753 (print) |
ISSN:
|
1212-5059 (online) |
Volume:
|
52 |
Issue:
|
3 |
Year:
|
2016 |
Pages:
|
159-203 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We study several linear connections (the first canonical, the Chern, the well adapted, the Levi Civita, the Kobayashi-Nomizu, the Yano, the Bismut and those with totally skew-symmetric torsion) which can be defined on the four geometric types of $(J^2=\pm 1)$-metric manifolds. We characterize when such a connection is adapted to the structure, and obtain a lot of results about coincidence among connections. We prove that the first canonical and the well adapted connections define a one-parameter family of adapted connections, named canonical connections, thus extending to almost Norden and almost product Riemannian manifolds the families introduced in almost Hermitian and almost para-Hermitian manifolds in [13] and [18]. We also prove that every connection studied in this paper is a canonical connection, when it exists and it is an adapted connection. (English) |
Keyword:
|
$(J^2=\pm 1)$-metric manifold |
Keyword:
|
$\alpha $-structure |
Keyword:
|
natural connection |
Keyword:
|
Nijenhuis tensor |
Keyword:
|
second Nijenhuis tensor |
Keyword:
|
Kobayashi-Nomizu connection |
Keyword:
|
first canonical connection |
Keyword:
|
well adapted connection |
Keyword:
|
connection with totally skew-symmetric torsion |
Keyword:
|
canonical connection |
MSC:
|
53C05 |
MSC:
|
53C07 |
MSC:
|
53C15 |
MSC:
|
53C50 |
idZBL:
|
Zbl 06644065 |
idMR:
|
MR3553174 |
DOI:
|
10.5817/AM2016-3-159 |
. |
Date available:
|
2016-09-20T11:58:21Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145830 |
. |
Reference:
|
[1] Agricola, I.: The Srní lectures on non-integrable geometries with torsion.Arch. Math. (Brno) 42 (2006), 5–84. Zbl 1164.53300, MR 2322400 |
Reference:
|
[2] Bismut, J.M.: A local index theorem for non Kähler manifolds.Math. Ann. 284 (4) (1999), 681–699. DOI: http://dx.doi.org/10.1007/bf01443359 MR 1006380, 10.1007/BF01443359 |
Reference:
|
[3] Chursin, M., Schäfer, L., Smoczyk, K.: Mean curvature flow of space-like Lagrangian submanifolds in almost para-Kähler manifolds.Calc. Var. 41 (1–2) (2011), 111–125. DOI: http://dx.doi.org/10.1007/s00526-010-0355-x Zbl 1232.53066, MR 2782799, 10.1007/s00526-010-0355-x |
Reference:
|
[4] Cruceanu, V., Etayo, F.: On almost para-Hermitian manifolds.Algebras Groups Geom. 16 (1) (1999), 47–61. Zbl 1003.53024, MR 1704088 |
Reference:
|
[5] Davidov, J., Grantcharov, G., Muškarov, O.: Curvature properties of the Chern connection of twistor spaces.Rocky Mountain J. Math. 39 (1) (2009), 27–48. DOI: http://dx.doi.org/10.1216/rmj-2009-39-1-27 Zbl 1160.53013, MR 2476800, 10.1216/RMJ-2009-39-1-27 |
Reference:
|
[6] Etayo, F., Santamaría, R.: $(J^2=\pm 1)$-metric manifolds.Publ. Math. Debrecen 57 (3–4) (2000), 435–444. Zbl 0973.53025, MR 1798725 |
Reference:
|
[7] Etayo, F., Santamaría, R.: The well adapted connection of a $(J^2=\pm 1)$-metric manifold.RACSAM (2016). DOI: http://dx.doi.org/10.1007/s13398-016-0299-x 10.1007/s13398-016-0299-x |
Reference:
|
[8] Friedrich, T., Ivanov, S.: Parallel spinors and connections with skew-symmetric torsion in string theory.Asian J. Math. 6 (2) (2002), 303–335. Zbl 1127.53304, MR 1928632, 10.4310/AJM.2002.v6.n2.a5 |
Reference:
|
[9] Gadea, P., Muñoz Masqué, J.: Classification of almost para-Hermitian manifolds.Rend. Mat. Appl. (7) 11 (1991), 377–396. MR 1122346 |
Reference:
|
[10] Ganchev, G., Borisov, A.V.: Note on the almost complex manifolds with a Norden metric.C. R. Acad. Bulgare Sci. 39 (5) (1986), 31–34. Zbl 0608.53031, MR 0857345 |
Reference:
|
[11] Ganchev, G., Kassabov, O.: Hermitian manifolds with flat associated connection.Kodai Math. J. 29 (2) (2006), 281–298. DOI: http://dx.doi.org/10.2996/kmj/1151936442 Zbl 1117.53052, MR 2247437, 10.2996/kmj/1151936442 |
Reference:
|
[12] Ganchev, G., Mihova, V.: Canonical connection and the canonical conformal group on an almost complex manifold with $B$-metric.Annuaire Univ. Sofia Fac. Math. Inform. 81 (1) (1987), 195–206. MR 1291897 |
Reference:
|
[13] Gauduchon, P.: Hermitian connections and Dirac operators.Boll. Un. Mat. Ital. B 7 suppl. 11 (2) (1997), 257–288. Zbl 0876.53015, MR 1456265 |
Reference:
|
[14] Gover, A. Rod, Nurowski, P.: Calculus and invariants on almost complex manifolds, including projective and conformal geometry.Illinois J. Math. 57 (2) (2013), 383–427. MR 3263039 |
Reference:
|
[15] Gray, A.: Nearly Kähler manifolds.J. Differential Geom. 4 (3) (1970), 283–309. Zbl 0201.54401, MR 0267502, 10.4310/jdg/1214429504 |
Reference:
|
[16] Gray, A., Hervella, L.M.: The sixteen classes of almost Hermitian manifolds and their linear invariants.Ann. Mat. Pura Appl. 123 (1) (1980), 35–58. DOI: http://dx.doi.org/10.1007/bf01796539 Zbl 0444.53032, MR 0581924, 10.1007/BF01796539 |
Reference:
|
[17] Gribacheva, D., Mekerov, D.: Canonical connection on a class of Riemannian almost product manifolds.J. Geom. 102 (1–2) (2011), 53–71. DOI: http://dx.doi.org/10.1007/s00022-011-0098-7 Zbl 1243.53011, MR 2904616, 10.1007/s00022-011-0098-7 |
Reference:
|
[18] Ivanov, S., Zamkovoy, S.: Parahermitian and paraquaternionic manifolds.Differential Geom. Appl. 23 (2) (2005), 205–234. DOI: http://dx.doi.org/10.1016/j.difgeo.2005.06.002 MR 2158044, 10.1016/j.difgeo.2005.06.002 |
Reference:
|
[19] Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry.vol. I and II, Interscience, N. York, 1963, 1969. Zbl 0119.37502, MR 0152974 |
Reference:
|
[20] Lichnerowicz, A.: Théorie globale des connexions et des groupes d’holonomie.Edizione Cremonese, Roma, 1957 (Reprinted in 1962), English version: Global theory of connections and holonomy groups, Noordhoff, Leyden, 1976. |
Reference:
|
[21] Mekerov, D.: On Riemannian almost product manifolds with nonintegrable structure.J. Geom. 89 (1–2) (2008), 119–129. DOI: http://dx.doi.org/10.1007/s00022-008-2084-2 Zbl 1166.53018, MR 2457026, 10.1007/s00022-008-2084-2 |
Reference:
|
[22] Mekerov, D.: On the geometry of the connection with totally skew-symmetric torsion on almost complex manifolds with Norden metric.C. R. Acad. Bulgare Sci. 63 (1) (2010), 19–28. Zbl 1224.53059, MR 2654318 |
Reference:
|
[23] Mekerov, D., Manev, M.: Natural connection with totally skew-symmetric torsion on Riemann almost product manifolds.Int. J. Geom. Methods Mod. Phys. 9 (1) (2012), 14. DOI: http://dx.doi.org/10.1142/s021988781250003x MR 2891517, 10.1142/S021988781250003X |
Reference:
|
[24] Mihova, V.: Canonical connection and the canonical conformal group on a Riemannian almost-product manifold.Serdica Math. J. 15 (1989), 351–358. Zbl 0709.53024, MR 1054627 |
Reference:
|
[25] Olszak, Z.: Four-dimensional para-Hermitian manifold.Tensor (N. S.) 56 (1995), 215–226. MR 1413027 |
Reference:
|
[26] Staikova, M., Gribachev, K.: Canonical connections and their conformal invariants on Riemannian almost product manifolds.Serdica Math. J. 18 (1992), 150–161. Zbl 0810.53026, MR 1224633 |
Reference:
|
[27] Teofilova, M.: Complex connections on complex manifolds with Norden metric.Contemporary Aspects of Complex Analysis, Differential Geometry and Mathematical Physics (Singapore), World Scientific, 2005, pp. 326–335. DOI: http://dx.doi.org/10.1142/9789812701763_0026 Zbl 1218.53028, MR 2180572, 10.1142/9789812701763_0026 |
Reference:
|
[28] Teofilova, M.: Almost complex connections on almost complex manifolds with Norden metric.Trends in Differential Geometry, Complex Analysis and Mathematical Physics (Singapore), World Scientific, 2009, pp. 231–240. DOI: http://dx.doi.org/10.1142/9789814277723_0026 Zbl 1183.53015, MR 2777640, 10.1142/9789814277723_0026 |
Reference:
|
[29] Vezzoni, L.: On the canonical Hermitian connection in nearly Kähler manifolds.Kodai Math. J. 32 (3) (2009), 420–431. DOI: http://dx.doi.org/10.2996/kmj/1257948887 Zbl 1180.53071, MR 2582009, 10.2996/kmj/1257948887 |
Reference:
|
[30] Yano, K.: Affine connexions in an almost product space.Kodai Math. Sem. Rep. 11 (1) (1959), 1–24. DOI: http://dx.doi.org/10.2996/kmj/1138844134 Zbl 0085.16502, MR 0107275, 10.2996/kmj/1138844134 |
. |