Previous |  Up |  Next

Article

Title: Solvability of a class of phase field systems related to a sliding mode control problem (English)
Author: Colturato, Michele
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 61
Issue: 6
Year: 2016
Pages: 623-650
Summary lang: English
.
Category: math
.
Summary: We consider a phase-field system of Caginalp type perturbed by the presence of an additional maximal monotone nonlinearity. Such a system arises from a recent study of a sliding mode control problem. We prove the existence of strong solutions. Moreover, under further assumptions, we show the continuous dependence on the initial data and the uniqueness of the solution. (English)
Keyword: phase transition problem
Keyword: phase field system
Keyword: nonlinear parabolic boundary value problem
Keyword: existence
Keyword: continuous dependence
MSC: 35B25
MSC: 35D30
MSC: 35K25
MSC: 35K61
MSC: 80A22
idZBL: Zbl 06674849
idMR: MR3572458
DOI: 10.1007/s10492-016-0150-x
.
Date available: 2016-11-26T20:41:32Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/145912
.
Reference: [1] Barbu, V.: Nonlinear Differential Equations of Monotone Types in Banach Spaces.Springer Monographs in Mathematics Springer, New York (2010). Zbl 1197.35002, MR 2582280
Reference: [2] Barbu, V., Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Sliding mode control for a nonlinear phase-field system.Preprint arXiv:1506.01665 [math.AP] (2015), 1-28. MR 3448672
Reference: [3] Br{é}zis, H.: Opérateurs maximaux monotones et semi-groupes de contractions dans les espaces de Hilbert.North-Holland Mathematics Studies 5. Notas de Matem{á}tica (50) North-Holland Publishing, Amsterdam-London; American Elsevier Publishing, New York (1973). Zbl 0252.47055, MR 0348562
Reference: [4] Brokate, M., Sprekels, J.: Hysteresis and Phase Transitions.Applied Mathematical Sciences 121 Springer, New York (1996). Zbl 0951.74002, MR 1411908, 10.1007/978-1-4612-4048-8_5
Reference: [5] Caginalp, G.: An analysis of a phase field model of a free boundary.Arch. Ration. Mech. Anal. 92 (1986), 205-245. Zbl 0608.35080, MR 0816623, 10.1007/BF00254827
Reference: [6] Colli, P., Gilardi, G., Marinoschi, G.: A boundary control problem for a possibly singular phase field system with dynamic boundary conditions.J. Math. Anal. Appl. 434 (2016), 432-463. Zbl 1327.49007, MR 3404567, 10.1016/j.jmaa.2015.09.011
Reference: [7] Colli, P., Gilardi, G., Marinoschi, G., Rocca, E.: Optimal control for a phase field system with a possibly singular potential.Math. Control Relat. Fields 6 (2016), 95-112. Zbl 1335.49008, MR 3448672, 10.3934/mcrf.2016.6.95
Reference: [8] Colli, P., Marinoschi, G., Rocca, E.: Sharp interface control in a Penrose-Fife model.ESAIM, Control Optim. Calc. Var. 22 (2016), 473-499. Zbl 1338.49007, MR 3491779, 10.1051/cocv/2015014
Reference: [9] Damlamian, A.: Some results on the multi-phase Stefan problem.Commun. Partial Differ. Equations 2 (1977), 1017-1044. Zbl 0399.35054, MR 0487015, 10.1080/03605307708820053
Reference: [10] DiBenedetto, E.: Continuity of weak solutions to a general porous medium equation.Indiana Univ. Math. J. 32 (1983), 83-118. Zbl 0526.35042, MR 0684758, 10.1512/iumj.1983.32.32008
Reference: [11] Duvaut, G.: Résolution d'un problème de Stefan (fusion d'un bloc de glace à zéro degré).C. R. Acad. Sci., Paris, Sér. A French 276 (1973), 1461-1463. Zbl 0258.35037, MR 0328346
Reference: [12] Elliott, C. M., Zheng, S.: Global existence and stability of solutions to the phase field equations.Free Boundary Value Problems Proc. Conf. Oberwolfach, 1989, Internat. Ser. Numer. Math. 95 Birkhäuser, Basel (1990), 46-58. Zbl 0733.35062, MR 1111021
Reference: [13] Friedman, A.: The Stefan problem in several space variables.Trans. Am. Math. Soc. 133 (1968), 51-87. Zbl 0162.41903, MR 0227625, 10.1090/S0002-9947-1968-0227625-7
Reference: [14] Grasselli, M., Petzeltová, H., Schimperna, G.: Long time behavior of solutions to the Caginalp system with singular potential.Z. Anal. Anwend. 25 (2006), 51-72. Zbl 1128.35021, MR 2216881, 10.4171/ZAA/1277
Reference: [15] Hoffmann, K.-H., Jiang, L. S.: Optimal control of a phase field model for solidification.Numer. Funct. Anal. Optimization 13 (1992), 11-27. Zbl 0724.49003, MR 1163315, 10.1080/01630569208816458
Reference: [16] Hoffmann, K.-H., Kenmochi, N., Kubo, M., Yamazaki, N.: Optimal control problems for models of phase-field type with hysteresis of play operator.Adv. Math. Sci. Appl. 17 (2007), 305-336. Zbl 1287.49005, MR 2337381
Reference: [17] Hui, K. M.: Existence of solutions of the very fast diffusion equation in bounded and unbounded domain.Math. Ann. 339 (2007), 395-443. Zbl 1145.35075, MR 2324725, 10.1007/s00208-007-0119-x
Reference: [18] Kenmochi, N., Niezgódka, M.: Evolution systems of nonlinear variational inequalities arising from phase change problems.Nonlinear Anal., Theory Methods Appl. 22 (1994), 1163-1180. MR 1279139, 10.1016/0362-546X(94)90235-6
Reference: [19] Lauren{ç}ot, Ph.: Long-time behaviour for a model of phase-field type.Proc. R. Soc. Edinb., Sect. A 126 (1996), 167-185. Zbl 0851.35055, MR 1378839, 10.1017/S0308210500030663
Reference: [20] Showalter, R. E.: Monotone Operators in Banach Space and Nonlinear Partial Differential Equations.Mathematical Surveys and Monographs 49 Amer. Math. Soc., Providence (1997). Zbl 0870.35004, MR 1422252
Reference: [21] Simon, J.: Compact sets in the space {$L^p(0,T;B)$}.Ann. Mat. Pura Appl., IV. Ser. 146 (1987), 65-96. MR 0916688
Reference: [22] V{á}zquez, J. L.: The Porous Medium Equation. Mathematical Theory.Oxford Mathematical Monographs The Clarendon Press, Oxford University Press, Oxford (2007). Zbl 1107.35003, MR 2286292
.

Files

Files Size Format View
AplMat_61-2016-6_1.pdf 339.8Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo