| Title: | A canonical connection on sub-Riemannian contact manifolds (English) | 
| Author: | Eastwood, Michael | 
| Author: | Neusser, Katharina | 
| Language: | English | 
| Journal: | Archivum Mathematicum | 
| ISSN: | 0044-8753 (print) | 
| ISSN: | 1212-5059 (online) | 
| Volume: | 52 | 
| Issue: | 5 | 
| Year: | 2016 | 
| Pages: | 277-289 | 
| Summary lang: | English | 
| . | 
| Category: | math | 
| . | 
| Summary: | We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case. (English) | 
| Keyword: | contact manifold | 
| Keyword: | sub-Riemannian geometry | 
| Keyword: | partial connection | 
| Keyword: | pseudo-Hermitian geometry | 
| MSC: | 53C17 | 
| MSC: | 53D10 | 
| MSC: | 70G45 | 
| idZBL: | Zbl 06674904 | 
| idMR: | MR3610863 | 
| DOI: | 10.5817/AM2016-5-277 | 
| . | 
| Date available: | 2016-12-20T21:54:42Z | 
| Last updated: | 2018-01-10 | 
| Stable URL: | http://hdl.handle.net/10338.dmlcz/145935 | 
| . | 
| Reference: | [1] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry.to appear in J. Geom. Anal. | 
| Reference: | [2] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves I.J. Dynam. Control Systems 8 (1) (2002), 93–140. Zbl 1019.53038, MR 1874705, 10.1023/A:1013904801414 | 
| Reference: | [3] Barilari, D., Rizzi, L.: On Jacobi fields and canonical connection in sub-Riemannian geometry.arXiv:1506.01827. | 
| Reference: | [4] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry.arXiv:1112.2142. | 
| Reference: | [5] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. Zbl 1183.53002, MR 2532439, 10.1090/surv/154 | 
| Reference: | [6] Eastwood, M.G., Gover, A.R.: Prolongation on contact manifolds.Indiana Univ. Math. J. 60 (2011), 1425–1486. MR 2996997, 10.1512/iumj.2011.60.4980 | 
| Reference: | [7] Falbel, E., Gorodski, C., Veloso, J.M.: Conformal sub-Riemannian geometry in dimension 3.Mat. Contemp. 9 (1995), 61–73. Zbl 0859.53021, MR 1378673 | 
| Reference: | [8] Morimoto, T.: Cartan connection associated with a subriemannian structure.Differential Geom. Appl. 26 (2008), 75–78. Zbl 1147.53027, MR 2393974, 10.1016/j.difgeo.2007.12.002 | 
| Reference: | [9] Rumin, M.: Un complexe de formes différentielles sur les variétés de contact.Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. Zbl 0694.57010, MR 1046521 | 
| Reference: | [10] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds.Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. Zbl 0331.53025, MR 0399517 | 
| Reference: | [11] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface.J. Differential Geom. 13 (1978), 25–41. Zbl 0379.53016, MR 0520599, 10.4310/jdg/1214434345 | 
| Reference: | [12] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram.Differential Geom. Appl. 27 (2009), 723–742. Zbl 1177.53020, MR 2552681, 10.1016/j.difgeo.2009.07.002 | 
| . |