Previous |  Up |  Next

Article

Title: A canonical connection on sub-Riemannian contact manifolds (English)
Author: Eastwood, Michael
Author: Neusser, Katharina
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 277-289
Summary lang: English
.
Category: math
.
Summary: We construct a canonically defined affine connection in sub-Riemannian contact geometry. Our method mimics that of the Levi-Civita connection in Riemannian geometry. We compare it with the Tanaka-Webster connection in the three-dimensional case. (English)
Keyword: contact manifold
Keyword: sub-Riemannian geometry
Keyword: partial connection
Keyword: pseudo-Hermitian geometry
MSC: 53C17
MSC: 53D10
MSC: 70G45
idZBL: Zbl 06674904
idMR: MR3610863
DOI: 10.5817/AM2016-5-277
.
Date available: 2016-12-20T21:54:42Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145935
.
Reference: [1] Agrachev, A.A., Barilari, D., Rizzi, L.: Sub-Riemannian curvature in contact geometry.to appear in J. Geom. Anal.
Reference: [2] Agrachev, A.A., Zelenko, I.: Geometry of Jacobi curves I.J. Dynam. Control Systems 8 (1) (2002), 93–140. Zbl 1019.53038, MR 1874705, 10.1023/A:1013904801414
Reference: [3] Barilari, D., Rizzi, L.: On Jacobi fields and canonical connection in sub-Riemannian geometry.arXiv:1506.01827.
Reference: [4] Bryant, R.L., Eastwood, M.G., Gover, A.R., Neusser, K.: Some differential complexes within and beyond parabolic geometry.arXiv:1112.2142.
Reference: [5] Čap, A., Slovák, J.: Parabolic Geometries I: Background and General Theory.Surveys and Monographs, vol. 154, Amer. Math. Soc., 2009. Zbl 1183.53002, MR 2532439, 10.1090/surv/154
Reference: [6] Eastwood, M.G., Gover, A.R.: Prolongation on contact manifolds.Indiana Univ. Math. J. 60 (2011), 1425–1486. MR 2996997, 10.1512/iumj.2011.60.4980
Reference: [7] Falbel, E., Gorodski, C., Veloso, J.M.: Conformal sub-Riemannian geometry in dimension 3.Mat. Contemp. 9 (1995), 61–73. Zbl 0859.53021, MR 1378673
Reference: [8] Morimoto, T.: Cartan connection associated with a subriemannian structure.Differential Geom. Appl. 26 (2008), 75–78. Zbl 1147.53027, MR 2393974, 10.1016/j.difgeo.2007.12.002
Reference: [9] Rumin, M.: Un complexe de formes différentielles sur les variétés de contact.Comptes Rendus Acad. Sci. Paris Math. 310 (1990), 401–404. Zbl 0694.57010, MR 1046521
Reference: [10] Tanaka, N.: A differential geometric study on strongly pseudo-convex manifolds.Lectures in Mathematics, Kyoto University, Kinokuniya, 1975. Zbl 0331.53025, MR 0399517
Reference: [11] Webster, S.M.: Pseudo-Hermitian structures on a real hypersurface.J. Differential Geom. 13 (1978), 25–41. Zbl 0379.53016, MR 0520599, 10.4310/jdg/1214434345
Reference: [12] Zelenko, I., Li, C.: Differential geometry of curves in Lagrange Grassmannians with given Young diagram.Differential Geom. Appl. 27 (2009), 723–742. Zbl 1177.53020, MR 2552681, 10.1016/j.difgeo.2009.07.002
.

Files

Files Size Format View
ArchMathRetro_052-2016-5_2.pdf 515.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo