Previous |  Up |  Next

Article

Title: Compositional models, Bayesian models and recursive factorization models (English)
Author: Malvestuto, Francesco M.
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 52
Issue: 5
Year: 2016
Pages: 696-723
Summary lang: English
.
Category: math
.
Summary: Compositional models are used to construct probability distributions from lower-order probability distributions. On the other hand, Bayesian models are used to represent probability distributions that factorize according to acyclic digraphs. We introduce a class of models, called \emph{recursive factorization models}, to represent probability distributions that recursively factorize according to sequences of sets of variables, and prove that they have the same representation power as both compositional models generated by sequential expressions and Bayesian models. Moreover, we present a linear (graphical) algorithm for deciding if a conditional independence is valid in a given recursive factorization model. (English)
Keyword: Bayesian model
Keyword: compositional model
Keyword: conditional independence
Keyword: Markov property
Keyword: recursive model
Keyword: sequential expression
MSC: 05C65
MSC: 05C85
MSC: 60E99
MSC: 65C50
MSC: 68T37
idZBL: Zbl 06674935
idMR: MR3602011
DOI: 10.14736/kyb-2016-5-0696
.
Date available: 2017-01-02T13:25:06Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/145964
.
Reference: [1] Aho, A. V., Hopcroft, J. E., Ullman, J. D.: Data Structures and Algorithms..Addison-Wesley Pub. Co, Reading 1987. Zbl 0487.68005, MR 0666695
Reference: [2] Bína, V., Jiroušek, R.: On computations with causal compositional models..Kybernetika 51 (2015), 525-539. Zbl 1340.65011, MR 3391683, 10.14736/kyb-2015-3-0525
Reference: [3] Geiger, D., Verma, T., Pearl, J.: Identifying independence in Bayesian networks..Networks 20 (1990), 507-534. Zbl 0724.05066, MR 1064736, 10.1002/net.3230200504
Reference: [4] Jiroušek, R.: Composition of probability measures on finite spaces..In: Proc. XIII International Conference on Uncertainty in Artificial Intelligence (D. Geiger and P. P. Shenoy, eds.), Morgan Kaufmann, San Francisco 1997, pp. 274-281. 10.1023/a:1014591402750
Reference: [5] Jiroušek, R.: Decomposition of multidimensional distributions represented by perfect sequences..Ann. Math. Artif. Intelligence 5 (2002), 215-226. Zbl 1004.60010, MR 1899952, 10.1023/a:1014591402750
Reference: [6] Jiroušek, R.: Foundations of compositional model theory..Int. J. General Systems 40 (2011), 623-678. Zbl 1252.68285, MR 2817988, 10.1080/03081079.2011.562627
Reference: [7] Jiroušek, R.: Local computations in Dempster-Shafer theory of evidence..Int. J. Approx. Reasoning 53 (2012), 1155-1167. Zbl 1266.68177, MR 2971864, 10.1016/j.ijar.2012.06.012
Reference: [8] Jiroušek, R.: On causal compositional models: simple examples..In: Proc. XIV International Conference on Information Processing and Management of Uncertainty in Knowledge-Bases Systems (IPMU 2014) (A. Laurent et al., eds.), Part I, CCIS 442, pp. 517-526. 10.1007/978-3-319-08795-5_53
Reference: [9] Jiroušek, R., Kratochvíl, V.: Foundations of compositional models: structural properties..Int. J. General Systems 44 (2015), 2-25. MR 3299901, 10.1080/03081079.2014.934370
Reference: [10] Jiroušek, R., Shenoy, P. P.: Compositional models in valuation-based systems..Int. J. Approx. Reasoning 55 (2014), 277-293. Zbl 1252.68310, MR 3133554, 10.1016/j.ijar.2013.02.002
Reference: [11] Jiroušek, R., Vejnarová, J.: General framework for multidimensional models..Int. J. Approx. Reasoning 18 (2003), 107-127. Zbl 1029.68131, 10.1002/int.10077
Reference: [12] Jiroušek, R., Vejnarová, J., Daniels, M.: Composition models of belief functions..In: Proc. V Symp. on Imprecise Probabilities and Their Applications (G. De Cooman, J. Vejnarová and M. Zaffalon, eds.), Action M Agency, Prague 2007, pp. 243-252.
Reference: [13] Kratochvíl, V.: Characteristic properties of equivalent structures in compositional models..Int. J. of Approx. Reasoning 52 (2011), 599-612. Zbl 1214.68400, MR 2787020, 10.1016/j.ijar.2010.12.005
Reference: [14] Kratochvíl, V.: Probabilistic compositional models: solutions of an equivalence problem..Int. J. Approx. Reasoning 54 (2013), 590-601. MR 3041095, 10.1016/j.ijar.2013.01.002
Reference: [15] Lauritzen, S. L.: Graphical Models..Oxford University Press, Oxford 1996. MR 1419991
Reference: [16] Lauritzen, S. L., Dawid, A. P., Larsen, B. N., Leimer, H.-G.: Independence properties of directed Markov fields..Networks 20 (1990), 491-505. Zbl 0743.05065, MR 1064735, 10.1002/net.3230200503
Reference: [17] Maier, D.: The Theory of Relational Databases..Computer Science Press, 1983. Zbl 0519.68082, MR 0691493
Reference: [18] Malvestuto, F. M.: A join-like operator to combine data cubes, and answer queries from multiple data cubes..ACM Trans. Database Systems 39, (2014), 3, 1-31. MR 3268995, 10.1145/2638545
Reference: [19] Malvestuto, F. M.: Equivalence of compositional expressions and independence relations in compositional models..Kybernetika 50 (2014), 322-362. MR 3245534, 10.14736/kyb-2014-3-0322
Reference: [20] Malvestuto, F. M.: Marginalization in models generated by compositional expressions..Kybernetika 51 (2015), 541-570. MR 3423187, 10.14736/kyb-2015-4-0541
Reference: [21] Malvestuto, F. M.: A general composition operator for probabilistic compositional models..Unpublished manuscript (2016).
Reference: [22] Pearl, J.: Probabilistic Reasoning in Intelligent Systems..Morgan Kaufmann Pub., San Mateo 1988. Zbl 0746.68089, MR 0965765
Reference: [23] Pourabbas, E., Shoshani, A.: Efficient estimation of joint queries from multiple OLAP databases..ACM Trans. Database Systems 32 (2007), 1, Article No. 2. 10.1145/1206049.1206051
Reference: [24] Tarjan, R. E., Yannakakis, M.: Simple linear-time algorithms to test chordality of graphs, test acyclicity of hypergraphs, and selectively reduce acyclic hypergraphs..SIAM J. Comput. 13 (1984), 566-579. Zbl 0562.68055, MR 0749707, 10.1137/0213035
Reference: [25] Verma, T., Pearl, J.: Causal networks: semantics and expressiveness..In: Proc. IV Workshop on Uncertainty in Artificial Intelligence, St. Paul 1988, pp. 352-359.
.

Files

Files Size Format View
Kybernetika_52-2016-5_3.pdf 711.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo