Title:
|
On convergence of kernel density estimates in particle filtering (English) |
Author:
|
Coufal, David |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
52 |
Issue:
|
5 |
Year:
|
2016 |
Pages:
|
735-756 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The paper deals with kernel density estimates of filtering densities in the particle filter. The convergence of the estimates is investigated by means of Fourier analysis. It is shown that the estimates converge to the theoretical filtering densities in the mean integrated squared error. An upper bound on the convergence rate is given. The result is provided under a certain assumption on the Sobolev character of the filtering densities. A sufficient condition is presented for the persistence of this Sobolev character over time. (English) |
Keyword:
|
particle filter |
Keyword:
|
kernel methods |
Keyword:
|
Fourier analysis |
MSC:
|
65C35 |
idZBL:
|
Zbl 06674937 |
idMR:
|
MR3602013 |
DOI:
|
10.14736/kyb-2016-5-0735 |
. |
Date available:
|
2017-01-02T13:27:45Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/145966 |
. |
Reference:
|
[1] Brabec, J., Hrůza, B.: Matematická analýza II (Mathematical Analysis II, in Czech)..SNTL/ALFA, 1986. |
Reference:
|
[2] Crisan, D., Doucet, A.: A survey of convergence results on particle filtering methods for practitioners..IEEE Trans. Signal Processing 50 (2002), 3, 736-746. MR 1895071, 10.1109/78.984773 |
Reference:
|
[3] Crisan, D., Míguez, J.: Particle-kernel estimation of the filter density in state-space models..Bernoulli 20 (2014), 4, 1879-1929. Zbl 1346.60112, MR 3263093, 10.3150/13-bej545 |
Reference:
|
[4] Doucet, A., Freitas, N. de, (Eds.), N. Gordon: Sequential Monte Carlo Methods in Practice..Springer-Verlag, New York 2001. Zbl 0967.00022, MR 1847783, 10.1007/978-1-4757-3437-9 |
Reference:
|
[5] Doucet, A., Johansen, A. M.: A tutorial on particle filtering and smoothing: fifteen years later..In: The Oxford Handbook of Nonlinear Filtering (D. Crisan and B. Rozovskii, eds.), Oxford University Press, 2011. |
Reference:
|
[6] Fristedt, B., Jain, N., Krylov, N.: Filtering and Prediction: A Primer..American Mathematical Society, 2007. Zbl 1165.62070, MR 2337747, 10.1090/stml/038 |
Reference:
|
[7] Givens, G. H.: Consistency of the local kernel density estimator..Statist. Probab. Lett. 25 (1995), 55-61. Zbl 0838.62026, MR 1364818, 10.1016/0167-7152(94)00205-m |
Reference:
|
[8] Heine, K., Crisan, D.: Uniform approximations of discrete-time filters..Adv. Appl. Probab. 40 (2008), 4, 979-1001. Zbl 1155.93039, MR 2488529, 10.1239/aap/1231340161 |
Reference:
|
[9] Hürzeler, M., Künsch, H. R.: Monte Carlo approximations for general state-space models..J. Comput. Graph. Statist. 7 (1998), 2, 175-193. MR 1649366, 10.2307/1390812 |
Reference:
|
[10] Künsch, H. R.: Recursive Monte Carlo filters: Algorithms and theoretical bounds..Ann. Statist. 33 (2005), 5, 1983-2021. MR 2211077, 10.1214/009053605000000426 |
Reference:
|
[11] Gland, F. Le, Oudjane, N.: Stability and uniform approximation of nonlinear filters using the Hilbert metric and application to particle filters..Ann. Appl. Probab. 14 (2004), 1, 144-187. Zbl 1060.93094, MR 2023019, 10.1214/aoap/1075828050 |
Reference:
|
[12] Moral, P. Del, Guionnet, A.: On the stability of interacting processes with applications to filtering and genetic algorithms..Annales de l'institut Henri Poincaré (B) Probabilités et Statistiques 37 (2001), 2, 155-194. MR 1819122, 10.1016/s0246-0203(00)01064-5 |
Reference:
|
[13] Musso, C., Oudjane, N., Gland, F. Le: Improving regularised particle filters..In: Sequential Monte Carlo Methods in Practice (A. Doucet, N. Freitas, and N. Gordon, eds.), Chapter 12, Springer 2001, pp. 247-272. Zbl 1056.93588, MR 1847795, 10.1007/978-1-4757-3437-9_12 |
Reference:
|
[14] Parzen, E.: On estimation of a probability density function and mode..Ann. Math. Statist. 33 (1962), 3, 1065-1076. Zbl 0116.11302, MR 0143282, 10.1214/aoms/1177704472 |
Reference:
|
[15] Särkkä, S.: Bayesian Filtering and Smoothing..Cambridge University Press, 2013. Zbl 1274.62021, MR 3154309 |
Reference:
|
[16] Silverman, B. W.: Density Estimation for Statistics and Data Analysis..Chapman and Hall/CRC, London, New York 1986. Zbl 0617.62042, MR 0848134, 10.1007/978-1-4899-3324-9 |
Reference:
|
[17] Tsybakov, A. B.: Introduction to Nonparametric Estimation..Springer, 2009. Zbl 1176.62032, MR 2724359, 10.1007/b13794 |
Reference:
|
[18] Wand, M. P., Jones, M. C.: Kernel Smoothing..Chapman and Hall/CRC, London, New York 1995. Zbl 0854.62043, MR 1319818, 10.1007/978-1-4899-4493-1 |
. |