Previous |  Up |  Next

Article

Title: Elementary stochastic calculus for finance with infinitesimals (English)
Author: Witzany, Jiří
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 1
Year: 2017
Pages: 101-124
Summary lang: English
.
Category: math
.
Summary: The concept of an equivalent martingale measure is of key importance for pricing of financial derivative contracts. The goal of the paper is to apply infinitesimals in the non-standard analysis set-up to provide an elementary construction of the equivalent martingale measure built on hyperfinite binomial trees with infinitesimal time steps. (English)
Keyword: equivalent martingale measure
Keyword: option pricing
Keyword: stochastic processes
Keyword: non-standard analysis
MSC: 60H05
MSC: 60J65
idZBL: Zbl 06736747
idMR: MR3631684
DOI: 10.14712/1213-7243.2015.192
.
Date available: 2017-03-12T16:43:33Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146031
.
Reference: [1] Albeverio S., Fenstad J.E., Hoegh-Krohn R., Lindstrom T.: Nonstadard Methods in Stochastic Analysis and Mathematical Physics.Dover Publications, 1986. MR 0859372
Reference: [2] Anderson R.M.: A nonstandard representation for Brownian motion and Itô integration.Israel Math. J. 25 (1976), 15–46. Zbl 0327.60039, MR 0464380, 10.1007/BF02756559
Reference: [3] Bacheier L.: La Theorie de la Speculation.Annales de l'Ecole Normale Superieure, 3, Gauthier-Villars, Paris, 1900. MR 1508978
Reference: [4] Berg I.: Principles of Infinitesimal Stochastic and Financial Analysis.World Scientific, Singapore, 2000. Zbl 0964.91024, MR 1789967
Reference: [5] Brown R.: A brief account of microscopical observations made in the months of June, July and August, 1827, on the particles contained in the pollen of plants; and on the general existence of active molecules in organic and inorganic bodies.Phil. Mag. 4 (1828), 161–173. 10.1080/14786442808674769
Reference: [6] Cox J., Ross S., Rubinstein M.: Option pricing: a simplified approach.J. Financial Econom. 7 (1979), 229–263. Zbl 1131.91333, 10.1016/0304-405X(79)90015-1
Reference: [7] Cutland N., Kopp E., Willinger W.: A nonstandard approach to option pricing.Mathematical Finance 1 (1991), no. 4, 1–38. Zbl 0900.90104, 10.1111/j.1467-9965.1991.tb00017.x
Reference: [8] Cutland N., Kopp E., Willinger W.: A nonstandard treatment of options driven by Poisson processes.Stochastics Stochastics Rep. 42 (1993), 115–133. Zbl 0808.90018, MR 1275815, 10.1080/17442509308833813
Reference: [9] Cutland N., Kopp E., Willinger W.: From discrete to continuous stochastic calculus.Stochastics Stochastics Rep. 52 (1995), 173–192. Zbl 0864.60039, MR 1381667, 10.1080/17442509508833970
Reference: [10] Cutland N., Kopp E., Willinger W., Wyman M.C.: Convergence of Snell envelopess and critical prices in the American put.Mathematics of Derivative Securitities (M.A.H. Dempster and S.R. Pliska, eds.), Cambridge University Press, Cambridge, 1997, pp. 126–140. MR 1491372
Reference: [11] Cutland N.: Loeb Measures in Practice: Recent Advances.Lecture Notes in Mathematics, 1751, Springer, Berlin, 2000. Zbl 0963.28015, MR 1810844, 10.1007/b76881
Reference: [12] Einstein A.: Investigations on the theory of the Brownian movement.R. Fürth (Ed.), Dover Publications, New York, 1956. Zbl 0936.01034, MR 0077443
Reference: [13] Herzberg F.S.: Stochastic Calculus with Infinitesimals.Springer, Heidelberg, 2013. Zbl 1302.60006, MR 2986409
Reference: [14] Hull J.: Options, Futures, and Other Derivatives.8th edition, Prentice Hall, 2011. Zbl 1087.91025
Reference: [15] Hurd A.E., Loeb P.A.: An Introduction to Nonstandard Real Analysis.Academic Press, Orlando, FL, 1985. Zbl 0583.26006, MR 0806135
Reference: [16] Kalina M.: Probability in the alternative set theory.Comment. Math. Univ. Carolin. 30 (1989), no. 2, 347–356. Zbl 0677.03039, MR 1014134
Reference: [17] Keisler J.H.: An infinitesimal approach to stochastic analysis.Mem. Amer. Math. Soc. 297, 1984. Zbl 0529.60062, MR 0732752
Reference: [18] Keisler J.H.: Elementary Calculus - an Infinitesimal Approach.2nd edition, University of Wisconsin - Creative Commons., 2000. Zbl 0655.26002
Reference: [19] Kopp P.E.: Hyperfinite Mathematical Finance.in Arkeryd et al. Nonstandard Analysis: Theory and Applications, Kluwer, Dordrecht, 1997. Zbl 0952.91028, MR 1603237
Reference: [20] Lindstrom T.: Nonlinear stochastic integrals for hyperfinite Lévy processes.Logic and Analysis 1 (2008), 91–129. Zbl 1156.60035, MR 2403500, 10.1007/s11813-007-0004-7
Reference: [21] Loeb P.A.: Conversion from nonstandard to standard measure spaces and applications in probability theory.Trans. Amer. Math. Soc. 211 (1975), 113–122. Zbl 0312.28004, MR 0390154, 10.1090/S0002-9947-1975-0390154-8
Reference: [22] Nelson A.: Internal set theory: a new approach to nonstandard analysis.Bull. Amer. Math. Soc. 83 (1977), no. 6, 1165–1198. Zbl 0373.02040, MR 0469763, 10.1090/S0002-9904-1977-14398-X
Reference: [23] Nelson E.: Radically Elementary Probability Theory.Princeton University Press, Princeton, NJ, 1987. Zbl 0651.60001, MR 0906454
Reference: [24] Pudlák P., Sochor A.: Models of the alternative set theory.J. Symbolic Logic 49 (1984), 570–585. Zbl 0578.03028, MR 0745386, 10.2307/2274190
Reference: [25] Rebonato R.: Volatility and Correlation: the Perfect Hedger and the Fox.2nd edition, Wiley, 2004.
Reference: [26] Robinson A.: Nonstandard analysis.Proc. Roy. Acad. Amsterdam Ser. A 64 (1961), 432–440. Zbl 0424.01031, MR 0142464
Reference: [27] Shreve S.: Stochastic Calculus for Finance II. Continuous Time Models.Springer, New York, 2004. Zbl 1068.91041, MR 2057928
Reference: [28] Shreve S.: Stochastic Calculus for Finance I. The Binomial Asset Pricing Model.Springer, New York, 2005. Zbl 1068.91040, MR 2049045
Reference: [29] Vopěnka P.: Mathematics in the Alternative Set Theory.Teubner, Leipzig, 1979. MR 0581368
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-1_9.pdf 418.4Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo