Previous |  Up |  Next

Article

Title: New quasi-Newton method for solving systems of nonlinear equations (English)
Author: Lukšan, Ladislav
Author: Vlček, Jan
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 62
Issue: 2
Year: 2017
Pages: 121-134
Summary lang: English
.
Category: math
.
Summary: We propose a new Broyden method for solving systems of nonlinear equations, which uses the first derivatives, but is more efficient than the Newton method (measured by the computational time) for larger dense systems. The new method updates QR or LU decompositions of nonsymmetric approximations of the Jacobian matrix, so it requires $O(n^2)$ arithmetic operations per iteration in contrast with the Newton method, which requires $O(n^3)$ operations per iteration. Computational experiments confirm the high efficiency of the new method. (English)
Keyword: nonlinear equation
Keyword: system of equations
Keyword: trust-region method
Keyword: quasi-Newton method
Keyword: adjoint Broyden method
Keyword: numerical algorithm
Keyword: numerical experiment
MSC: 65H10
MSC: 65K10
idZBL: Zbl 06738485
idMR: MR3649515
DOI: 10.21136/AM.2017.0253-16
.
Date available: 2017-03-31T09:45:27Z
Last updated: 2020-07-02
Stable URL: http://hdl.handle.net/10338.dmlcz/146699
.
Reference: [1] Bennett, J. M.: Triangular factors of modified matrices.Numer. Math. 7 (1965), 217-221. Zbl 0132.36204, MR 0177503, 10.1007/BF01436076
Reference: [2] Broyden, C. G.: A class of methods for solving nonlinear simultaneous equations.Math. Comput. 19 (1965), 577-593. Zbl 0131.13905, MR 0198670, 10.2307/2003941
Reference: [3] Conn, A. R., Gould, N. I. M., Toint, P. L.: Trust-Region Methods.MPS/SIAM Series on Optimization 1, Society for Industrial and Applied Mathematics, Philadelphia; Mathematical Programming Society, Philadelphia (2000). Zbl 0958.65071, MR 1774899, 10.1137/1.9780898719857
Reference: [4] J. E. Dennis, Jr., R. B. Schnabel: Numerical Methods for Unconstrained Optimization and Nonlinear Equations.Classics in Applied Mathematics 16, Society for Industrial and Applied Mathematics, Philadelphia (1996). Zbl 0847.65038, MR 1376139, 10.1137/1.9781611971200
Reference: [5] Gay, D. M.: Some convergence properties of Broyden's method.SIAM J. Numer. Anal. 16 (1979), 623-630. Zbl 0453.65034, MR 0537276, 10.1137/0716047
Reference: [6] Griewank, A., Walther, A.: Evaluating Derivatives. Principles and Techniques of Algorithmic Differentiation.Society for Industrial and Applied Mathematics, Philadelphia (2008). Zbl 1159.65026, MR 2454953, 10.1137/1.9780898717761
Reference: [7] Ip, C. M., Todd, M. J.: Optimal conditioning and convergence in rank one quasi-Newton updates.SIAM J. Numer. Anal. 25 (1988), 206-221. Zbl 0638.65041, MR 0923935, 10.1137/0725015
Reference: [8] Lukšan, L.: Inexact trust region method for large sparse systems of nonlinear equations.J. Optimization Theory Appl. 81 (1994), 569-590. Zbl 0803.65071, MR 1281739, 10.1007/BF02193101
Reference: [9] L. Lukšan, M. Tůma, J. Vlček, N. Ramešová, M. Šiška, J, Hartman, C. Matonoha: UFO 2014. Interactive System for Universal Functional Optimization.Technical Report V-1218. Prague, Institute of Computer Science AS CR, Praha (2014).
Reference: [10] Lukšan, L., Vlček, J.: Truncated trust region methods based on preconditioned iterative subalgorithms for large sparse systems of nonlinear equations.J. Optimization Theory Appl. 95 (1997), 637-658. Zbl 0902.90146, MR 1600609, 10.1023/A:1022678023392
Reference: [11] Lukšan, L., Vlček, J.: Computational experience with globally convergent descent methods for large sparse systems of nonlinear equations.Optim. Methods Softw. 8 (1998), 201-223. Zbl 0927.65068, MR 1623249, 10.1080/10556789808805677
Reference: [12] Powell, M. J. D.: A new algorithm for unconstrained optimization.Nonlinear Programming, Proc. Sympos., Univ. of Wisconsin, Madison (J. B. Rosen, O. L. Mangasarian, K. Ritter, eds.) Academic Press, London (1970), 31-65. Zbl 0228.90043, MR 0272162, 10.1016/b978-0-12-597050-1.50006-3
Reference: [13] Powell, M. J. D.: On the global convergence of trust region algorithms for unconstrained minimization.Math. Program. 29 (1984), 297-303. Zbl 0569.90069, MR 0753758, 10.1007/BF02591998
Reference: [14] Schlenkrich, S., Griewank, A., Walther, A.: On the local convergence of adjoint Broyden methods.Math. Program. 121 (2010), 221-247. Zbl 1185.90207, MR 2524890, 10.1007/s10107-008-0232-y
Reference: [15] Schlenkrich, S., Walther, A.: Global convergence of quasi-Newton methods based on adjoint Broyden updates.Appl. Numer. Math. 59 (2009), 1120-1136. Zbl 1163.65025, MR 2495142, 10.1016/j.apnum.2008.05.007
Reference: [16] Yuan, Y.-X.: Recent advances in numerical methods for nonlinear equations and nonlinear least squares.Numer. Algebra Control Optim. 1 (2011), 15-34. Zbl 1226.65045, MR 2806290, 10.3934/naco.2011.1.15
Reference: [17] Yuan, Y.-X.: Recent advances in trust region algorithms.Math. Program. 151 (2015), 249-281. Zbl 1317.65141, MR 3347556, 10.1007/s10107-015-0893-2
.

Files

Files Size Format View
AplMat_62-2017-2_3.pdf 296.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo