Full entry |
PDF
(0.5 MB)
Feedback

optimization; cost function; global minimum; global convergence; local convergence; differential evolution algorithm; optimal solution set; convergence in probability; numerical testing

References:

[1] Hu, Z., Xiong, S., Su, Q., Zhang, X.: **Sufficient conditions for global convergence of differential evolution algorithm**. J. Appl. Math. 2013 (2013), Article ID 139196, 14 pages. DOI 10.1155/2013/193196 | MR 3122108

[2] Mlýnek, J., Knobloch, R., Srb, R.: **Mathematical model of the metal mould surface temperature optimization**. AIP Conference Proceedings 1690 AIP Publishing, Melville (2015), Article No. 020018, 8 pages. DOI 10.1063/1.4936696

[3] Mlýnek, J., Knobloch, R., Srb, R.: **Optimization of a heat radiation intensity and temperature field on the mould surface**. ECMS 2016 Proceedings, 30th European Conference on Modelling and Simulation Regensburg, Germany (2016), 425-431. DOI 10.7148/2016-0425 | MR 3203813

[4] Price, K. V.: **Differential evolution: a fast and simple numerical optimizer**. Proceedings of North American Fuzzy Information Processing Berkeley (1996), 524-527. DOI 10.1109/NAFIPS.1996.534790

[5] Price, K. V., Storn, R. M., Lampien, J. A.: **Differential Evolution. A Practical Approach to Global Optimization**. Natural Computing Series. Springer, Berlin (2005). DOI 10.1007/3-540-31306-0 | MR 2191377 | Zbl 1186.90004

[6] Simon, D.: **Evolutionary Optimization Algorithms. Biologically Inspired and Population-Based Approaches to Computer Intelligence**. John Wiley & Sons, Hoboken (2013). MR 3362741 | Zbl 1280.68008

[7] Storn, R. M., Price, K. V.: **Differential evolution---a simple and efficient heuristics for global optimization over continuous spaces**. J. Glob. Optim. 11 (1997), 341-359. DOI 10.1023/A:1008202821328 | MR 1479553 | Zbl 0888.90135