Previous |  Up |  Next


aggregation function; overrunning and underrunning property; sub-additive and super-additive transformation
For an aggregation function $A$ we know that it is bounded by $A^*$ and $A_*$ which are its super-additive and sub-additive transformations, respectively. Also, it is known that if $A^*$ is directionally convex, then $A=A^*$ and $A_*$ is linear; similarly, if $A_*$ is directionally concave, then $A=A_*$ and $A^*$ is linear. We generalize these results replacing the directional convexity and concavity conditions by the weaker assumptions of overrunning a super-additive function and underrunning a sub-additive function, respectively.
[1] Arlotto, A., Scarsini, M.: Hessian orders and multinormal distributions. J. Multivariate Anal. 100 (2009), 2324-2330. DOI 10.1016/j.jmva.2009.03.009 | MR 2560373 | Zbl 1177.60020
[2] Beliakov, G., Pradera, A., Calvo, T.: Aggregation Functions: A Guide for Practitioners. Springer-Verlag, Berlin 2007. DOI 10.1007/978-3-540-73721-6_5
[3] Bernstein, F., Doetsch, G.: Zur Theorie der konvexen Functionen. Math. Annalen 76 (1915), 514-526. DOI 10.1007/bf01458222 | MR 1511840
[4] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions (Encyklopedia of Mathematics and its Applications). Cambridge University Press, 2009. DOI 10.1017/cbo9781139644150 | MR 2538324
[5] Greco, S., Mesiar, R., Rindone, F., Šipeky, L.: The superadditive and the subadditive transformations of integrals and aggregation functions. Fuzzy Sets and Systems 291 (2016), 40-53. DOI 10.1016/j.fss.2015.08.006 | MR 3463652
[6] Kouchakinejad, F., Šipošová, A.: A note on the super-additive and sub-additive transformations of aggregation functions: The one-dimensional case. In: Mathematics, Geometry and their Applications, STU Bratislava 2016, pp. 15-19. MR 3510879
[7] Kuczma, M.: An Introduction to the Theory of Functional Equations and Inequalities. Second edition. Birkhäuser, 2009. DOI 10.1007/978-3-7643-8749-5 | MR 2467621
[8] Marinacci, M., Montrucchio, L.: Ultramodular functions. Math. Oper. Res. 30 (2005), 311-332. DOI 10.1287/moor.1040.0143 | MR 2142035 | Zbl 1082.52006
[9] Murenko, A.: A generalization of Bernstein-Doetsch theorem. Demonstration Math. XLV 1 (2012), 35-38. MR 2934395 | Zbl 1260.26014
[10] Šipošová, A.: A note on the superadditive and the subadditive transformations of aggregation functions. Fuzzy Sets and Systems 299 (2016), 98-104. DOI 10.1016/j.fss.2015.10.008 | MR 3510879
[11] Šipošová, A., Šipeky, L.: On aggregation functions with given superadditive and subadditive transformations. In: Congress on Information Technology, Computational and Experimental Physics, Krakow (Poland) 2015, pp. 199-202.
[12] Šipošová, A., Šipeky, L., Širáň, J.: On the existence of aggregation functions with given super-additive and sub-additive transformations. Fuzzy Sets and Systems (in press). DOI 10.1016/j.fss.2016.11.009 | MR 3510879
Partner of
EuDML logo