Title:
|
Density estimation via best $L^2$-approximation on classes of step functions (English) |
Author:
|
Ferger, Dietmar |
Author:
|
Venz, John |
Language:
|
English |
Journal:
|
Kybernetika |
ISSN:
|
0023-5954 (print) |
ISSN:
|
1805-949X (online) |
Volume:
|
53 |
Issue:
|
2 |
Year:
|
2017 |
Pages:
|
198-219 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
We establish consistent estimators of jump positions and jump altitudes of a multi-level step function that is the best $L^2$-approximation of a probability density function $f$. If $f$ itself is a step-function the number of jumps may be unknown. (English) |
Keyword:
|
argmin-theorem |
Keyword:
|
density estimation |
Keyword:
|
step functions |
Keyword:
|
martingale inequalities |
Keyword:
|
multivariate cadlag stochastic processes |
MSC:
|
60G44 |
MSC:
|
62F10 |
MSC:
|
62G07 |
idZBL:
|
Zbl 06770164 |
idMR:
|
MR3661348 |
DOI:
|
10.14736/kyb-2017-2-0198 |
. |
Date available:
|
2017-06-25T17:53:33Z |
Last updated:
|
2018-01-10 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146801 |
. |
Reference:
|
[1] Billingsley, P.: Convergence of Probability Measures. Second Edition..John Wiley and Sons, Inc., New York 1999. MR 1700749, 10.1002/9780470316962 |
Reference:
|
[2] Birnbaum, Z., Marshall, A.: Some multivariate Chebyshev inequalities with extensions to continuous parameter processes..Ann. Math. Statist. 32 (1961), 687-703. MR 0148106, 10.1214/aoms/1177704964 |
Reference:
|
[3] Chu, C. K., Cheng, P. E.: Estimation of jump points and jump values of a density function..Statist. Sinica 6 (1996), 79-95. Zbl 0839.62039, MR 1379050 |
Reference:
|
[4] Dudley, R. .M.: Uniform Central Limit Theorems..Cambridge University Press, New York 1999. Zbl 1317.60030, MR 1720712, 10.1017/cbo9780511665622 |
Reference:
|
[5] Ferger, D.: Minimum distance estimation in normed linear spaces with Donsker-classes..Math. Methods Statist. 19 (2010), 246-266. Zbl 1282.60029, MR 2742928, 10.3103/s1066530710030038 |
Reference:
|
[6] Ferger, D.: Arginf-sets of multivariate cadlag processes and their convergence in hyperspace topologies..Theory Stoch. Process. 20 (2015), 36, 13-41. MR 3510226 |
Reference:
|
[7] Gaenssler, P., Stute, W.: Wahrscheinlichkeitstheorie..Springer-Verlag, Berlin, Heidelberg, New York 1977. Zbl 0357.60001, MR 0501219 |
Reference:
|
[8] Kanazawa, Y.: An optimal variable cell histogram..Comm. Statist. Theory Methods 17 (1988), 1401-1422. Zbl 0939.62508, MR 0945798, 10.1080/03610928808829688 |
Reference:
|
[9] Kanazawa, Y.: An optimal variable cell histogram based on the sample spacings..Ann. Statist. 20 (1992), 291-304. Zbl 0745.62034, MR 1150345, 10.1214/aos/1176348523 |
Reference:
|
[10] Koul, H. L.: Weighted Empirical Processes in Dynamic Nonlinear Models. Second Edition..Springer-Verlag, New York 2002. MR 1911855, 10.1007/978-1-4613-0055-7 |
Reference:
|
[11] Massart, P.: The tight constant in the Dvoretzky-Kiefer-Wolfowitz inequality..Ann. Probab. 18 (1990), 1269-1283. Zbl 0713.62021, MR 1062069, 10.1214/aop/1176990746 |
Reference:
|
[12] Rockefellar, R. T., Wets, R. J.-B.: Variational Analysis..Springer-Verlag, Berlin, Heidelberg 1998. |
Reference:
|
[13] Shorack, G. R., Wellner, J. A.: Empirical Processes With Applications to Statistics..John Wiley and Sons, New York, Chichester, Brisbane, Toronto, Singapore 1986. Zbl 1171.62057, MR 0838963 |
. |