Previous |  Up |  Next

Article

Title: Isometry invariant Finsler metrics on Hilbert spaces (English)
Author: Bilokopytov, Eugene
Language: English
Journal: Archivum Mathematicum
ISSN: 0044-8753 (print)
ISSN: 1212-5059 (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 141-153
Summary lang: English
.
Category: math
.
Summary: In this paper we study isometry-invariant Finsler metrics on inner product spaces over $\mathbb{R}$ or $\mathbb{C}$, i.e. the Finsler metrics which do not change under the action of all isometries of the inner product space. We give a new proof of the analytic description of all such metrics. In this article the most general concept of the Finsler metric is considered without any additional assumptions that are usually built into its definition. However, we present refined versions of the described results for more specific classes of metrics, including the class of Riemannian metrics. Our main result states that for an isometry-invariant Finsler metric the only possible linear maps under which the metric is invariant are scalar multiples of isometries. Furthermore, we characterize the metrics invariant with respect to all linear maps of this type. (English)
Keyword: Finsler metric
Keyword: unitary invariance
Keyword: isometries
Keyword: Riemannian metric
MSC: 53B40
MSC: 53C60
MSC: 58B20
idZBL: Zbl 06819521
idMR: MR3708768
DOI: 10.5817/AM2017-3-141
.
Date available: 2017-09-13T09:31:28Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/146880
.
Reference: [1] Abate, M., Patrizio, G.: Finsler metrics – a global approach.Lecture Notes in Mathematics, vol. 1591, Springer Verlag, Berlin, 1994, With applications to geometric function theory. Zbl 0837.53001, MR 1323428, 10.1007/BFb0073980
Reference: [2] Arcozzi, N., Rochberg, R., Sawyer, E., Wick, B.D.: Distance functions for reproducing kernel Hilbert spaces.Function spaces in modern analysis, Contemp. Math., vol. 547, Amer. Math. Soc., Providence, RI, 2011, pp. 25–53. Zbl 1236.46023, MR 2856478
Reference: [3] Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry.Graduate Studies in Math., vol. 33, American Mathematical Society, Providence, RI, 2001, pp. xiv+415. Zbl 0981.51016, MR 1835418
Reference: [4] Kobayashi, S.: Geometry of bounded domains.Trans. Amer. Math. Soc. 92 (1959), 267–290. Zbl 0136.07102, MR 0112162, 10.1090/S0002-9947-1959-0112162-5
Reference: [5] McCarthy, P.J., Rutz, S.F.: The general four-dimensional spherically symmetric Finsler space.Gen. Relativity Gravitation 25 (6) (1993), 589–602. Zbl 0806.53022, MR 1218065, 10.1007/BF00757070
Reference: [6] Xia, H., Zhong, Ch.: A classification of unitary invariant weakly complex Berwald metrics of constant holomorphic curvature.Differential Geom. Appl. 43 (2015), 1–20. Zbl 1328.53031, MR 3421873, 10.1016/j.difgeo.2015.08.001
Reference: [7] Zhong, Ch.: On unitary invariant strongly pseudoconvex complex Finsler metrics.Differential Geom. Appl. 40 (2015), 159–186. Zbl 1320.53095, MR 3333101, 10.1016/j.difgeo.2015.02.002
Reference: [8] Zhou, L.: Spherically symmetric Finsler metrics in $R^n$.Publ. Math. Debrecen 80 (1–2) (2012), 67–77. MR 2920216
.

Files

Files Size Format View
ArchMathRetro_053-2017-3_2.pdf 544.6Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo