Previous |  Up |  Next

Article

Title: Some applications of the point-open subbase game (English)
Author: Sánchez, D. Guerrero
Author: Tkachuk, V. V.
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 383-395
Summary lang: English
.
Category: math
.
Summary: Given a subbase $\mathcal S$ of a space $X$, the game $PO(\mathcal S,X)$ is defined for two players $P$ and $O$ who respectively pick, at the $n$-th move, a point $x_n\in X$ and a set $U_n\in \mathcal S$ such that $x_n\in U_n$. The game stops after the moves $\{x_n,U_n: n\in\o\}$ have been made and the player $P$ wins if $\bigcup_{n\in\o}U_n=X$; otherwise $O$ is the winner. Since $PO(\mathcal S,X)$ is an evident modification of the well-known point-open game $PO(X)$, the primary line of research is to describe the relationship between $PO(X)$ and $PO(\mathcal S,X)$ for a given subbase $\mathcal S$. It turns out that, for any subbase $\mathcal S$, the player $P$ has a winning strategy in $PO(\mathcal S,X)$ if and only if he has one in $PO(X)$. However, these games are not equivalent for the player $O$: there exists even a discrete space $X$ with a subbase $\mathcal S$ such that neither $P$ nor $O$ has a winning strategy in the game $PO(\mathcal S,X)$. Given a compact space $X$, we show that the games $PO(\mathcal S,X)$ and $PO(X)$ are equivalent for any subbase $\mathcal S$ of the space $X$. (English)
Keyword: point-open game
Keyword: subbase
Keyword: winning strategy
Keyword: players
Keyword: discrete space
Keyword: compact space
Keyword: scattered space
Keyword: measurable cardinal
MSC: 54A25
MSC: 54D30
MSC: 54D70
MSC: 91A05
idZBL: Zbl 06837073
idMR: MR3708781
DOI: 10.14712/1213-7243.2015.210
.
Date available: 2017-11-22T09:26:39Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146904
.
Reference: [1] Baldwin S.: Possible point-open types of subsets of the reals.Topology Appl. 38 (1991), 219–223. Zbl 0719.54003, MR 1098902, 10.1016/0166-8641(91)90087-3
Reference: [2] Daniels P., Gruenhage G.: The point-open types of subsets of the reals.Topology Appl. 37 (1990), no. 1, 53–64. MR 1075373, 10.1016/0166-8641(90)90014-S
Reference: [3] Engelking R.: General Topology.PWN, Warszawa, 1977. Zbl 0684.54001, MR 0500780
Reference: [4] Galvin F.: Indeterminacy of point-open games.Bull. Acad. Polon. Sci. Sér. Math. 26 (1978), no. 5, 445–449. Zbl 0392.90101, MR 0493925
Reference: [5] Kuratowski K.: Topology, Volume 1.Academic Press, New York, 1966. MR 0217751
Reference: [6] Laver R.: On the consistency of Borel's conjecture.Acta Math. 137 (1976), 151–169. Zbl 0357.28003, MR 0422027, 10.1007/BF02392416
Reference: [7] Pawlikowski J.: Undetermined sets of point-open games.Fund. Math. 144 (1994), 279–285. Zbl 0853.54033, MR 1279482
Reference: [8] Telgársky R.: Spaces defined by topological games.Fund. Math. 88 (1975), 193–223. MR 0380708, 10.4064/fm-88-3-193-223
Reference: [9] Telgársky R.: Spaces defined by topological games, II.Fund. Math. 116 (1983), no. 3, 189–207. Zbl 0558.54029, MR 0716219, 10.4064/fm-116-3-189-207
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_10.pdf 304.3Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo