Title:
|
Absolute continuity with respect to a subset of an interval (English) |
Author:
|
Loukotová, Lucie |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
58 |
Issue:
|
3 |
Year:
|
2017 |
Pages:
|
327-346 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
The aim of this paper is to introduce a generalization of the classical absolute continuity to a relative case, with respect to a subset $M$ of an interval $I$. This generalization is based on adding more requirements to disjoint systems $\{(a_k, b_k)\}_K$ from the classical definition of absolute continuity -- these systems should be not too far from $M$ and should be small relative to some covers of $M$. We discuss basic properties of relative absolutely continuous functions and compare this class with other classes of generalized absolutely continuous functions. (English) |
Keyword:
|
absolute continuity |
Keyword:
|
quasi-uniformity |
Keyword:
|
acceptable mapping |
MSC:
|
26A36 |
MSC:
|
26A46 |
idZBL:
|
Zbl 06837069 |
idMR:
|
MR3708777 |
DOI:
|
10.14712/1213-7243.2015.213 |
. |
Date available:
|
2017-11-22T09:22:07Z |
Last updated:
|
2019-10-01 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/146908 |
. |
Reference:
|
[1] Bartle R.G.: Modern Theory of Integration.American Mathematical Society, Providence, RI, 2001. Zbl 0968.26001, MR 1817647 |
Reference:
|
[2] Bogachev V.I.: Measure Theory I..Springer, Berlin, Heidelberg, 2007. MR 2267655 |
Reference:
|
[3] Ene V.: Characterisations of VBG $\cap$ (N).Real Anal. Exch. 23 (1997-1998), no. 2, 611–630. MR 1639992 |
Reference:
|
[4] Ene V.: Characterisations of VB$^{\ast}$G $\cap$ (N).Real Anal. Exch. 23 (1997-1998), no. 2, 571–600. MR 1639984 |
Reference:
|
[5] Gong Z.: New descriptive characterisation of Henstock-Kurzweil integral.Southeast Asian Bull. Math., 2003, no. 27, 445–450. MR 2045557 |
Reference:
|
[6] Gordon R.A.: A descriptive characterization of the generalized Riemann integral.Real Anal. Exch. 15 (1990), no. 1, 397–400. Zbl 0703.26009, MR 1042557 |
Reference:
|
[7] Gordon R.A.: The Integrals of Lebesgue, Denjoy, Perron, and Henstock.American Mathematical Society, Providence, RI, 1994. Zbl 0807.26004, MR 1288751 |
Reference:
|
[8] Fletcher P., Lindgren W.F.: Quasi-uniform Spaces.Lecture Notes in Pure and Applied Mathematics, 77, Dekker, New York, 1982. Zbl 0583.54017, MR 0660063 |
Reference:
|
[9] Isbell J.R.: Uniform Spaces.American Mathematical Society, Providence, RI, 1964. Zbl 0124.15601, MR 0170323 |
Reference:
|
[10] Lee P.Y.: On $ {ACG}^{\ast}$ functions.Real Anal. Exch. 15 (1990), no. 2, 754–759. MR 1059436 |
Reference:
|
[11] Lee P.Y.: Lanzhou Lectures on Henstock Integration.World Scientific, Singapore, 1989. Zbl 0699.26004, MR 1050957 |
Reference:
|
[12] Njastad O.: On uniform spaces where all uniformly continuous functions are bounded.Monatsh. Math. 69 (1965), no. 2, 167–176. Zbl 0145.19502, MR 0178453, 10.1007/BF01298321 |
Reference:
|
[13] Saks S.: Theory of the Integral.Warsawa, Lwów, 1937. Zbl 0017.30004 |
Reference:
|
[14] Sworowski P.: On the uniform strong Lusin condition.Math. Slovaca 63 (2013), no. 2, 229-–242. Zbl 1324.26010, MR 3037065, 10.2478/s12175-012-0095-9 |
Reference:
|
[15] Zhereby'ev Yu.A.: On the Denjoy-Luzin definitions of the function classes $ACG$, $ACG^{\ast}$, $VBG$, and $VBG^{\ast}$.Mathematical Notes 81 (2007), no. 2, 183–192. MR 2409272, 10.1134/S000143460701021X |
. |