Previous |  Up |  Next

Article

Title: Property of being semi-Kelley for the cartesian products and hyperspaces (English)
Author: Castañeda-Alvarado, Enrique
Author: Vidal-Escobar, Ivon
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 58
Issue: 3
Year: 2017
Pages: 359-369
Summary lang: English
.
Category: math
.
Summary: In this paper we construct a Kelley continuum $X$ such that $X\times [0,1]$ is not semi-Kelley, this answers a question posed by J.J. Charatonik and W.J. Charatonik in A weaker form of the property of Kelley, Topology Proc. 23 (1998), 69--99. In addition, we show that the hyperspace $C(X)$ is not semi- Kelley. Further we show that small Whitney levels in $C(X)$ are not semi-Kelley, answering a question posed by A. Illanes in Problemas propuestos para el taller de Teoría de continuos y sus hiperespacios, Queretaro, 2013. (English)
Keyword: continuum
Keyword: property of Kelley
Keyword: semi-Kelley
Keyword: cartesian products
Keyword: hyperspaces
Keyword: Whitney levels
MSC: 54B20
MSC: 54F15
MSC: 54G20
idZBL: Zbl 06837071
idMR: MR3708779
DOI: 10.14712/1213-7243.2015.217
.
Date available: 2017-11-22T09:24:15Z
Last updated: 2019-10-01
Stable URL: http://hdl.handle.net/10338.dmlcz/146909
.
Reference: [1] Calderón-Camacho I.D., Castañeda-Alvarado E., Islas-Moreno C., Maya-Escudero D., Ruiz-Montañez F.J.: Being semi-Kelley does not imply semi-smoothness.Questions Answers Gen. Topology 32 (2014), 73–77. Zbl 1302.54066, MR 3222532
Reference: [2] Charatonik J.J.: Semi-Kelley continua and smoothness.Questions Answers Gen. Topology 21 (2003), 103–108. Zbl 1041.54031, MR 1998212
Reference: [3] Charatonik J.J., Charatonik W.J.: A weaker form of the property of Kelley.Topology Proc. 23 (1998), 69–99. Zbl 0943.54022, MR 1743801
Reference: [4] Charatonik J.J., Charatonik W.J.: Property of Kelley for the cartesian product and hyperspaces.Proc. Amer. Math. Soc. 136 (2008), 341–346. MR 2350421, 10.1090/S0002-9939-07-08650-9
Reference: [5] Charatonik W.J.: On the property of Kelley in hyperspaces.Topology Proc. International Conference, Leningrand 1982, Lectures Notes in Math., 1060, Springer, Berlin, 1984, pp. 7–10. Zbl 0548.54004, MR 0770219
Reference: [6] Eberhat C., Nadler S.B., Jr.: The dimension of certain hyperspaces.Bull. Pol. Acad. Sci., 19 (1971), 1027–1034. MR 0303513
Reference: [7] Kato H.: A note on continuus mappings and the property of J.L. Kelley.Proc. Amer. Math. Soc. 112 (1991), 1143–1148. MR 1073527, 10.1090/S0002-9939-1991-1073527-4
Reference: [8] Kelley J.L.: Hyperspaces of a continuum.Trans. Amer. Math. Soc. 52 (1942), 22–36. Zbl 0061.40107, MR 0006505, 10.1090/S0002-9947-1942-0006505-8
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_58-2017-3_8.pdf 411.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo