Previous |  Up |  Next

Article

Keywords:
differentiability; Lipschitz functions; universal differentiability set; $\sigma$-porous set
Summary:
A subset of $\mathbb R^{d}$ is called a universal differentiability set if it contains a point of differentiability of every Lipschitz function $f\colon\mathbb R^{d}\to \mathbb R$. We show that any universal differentiability set contains a `kernel' in which the points of differentiability of each Lipschitz function are dense. We further prove that no universal differentiability set may be decomposed as a countable union of relatively closed, non-universal differentiability sets.
References:
[1] Alberti G., Csörnyei M., Preiss D.: Differentiability of Lipschitz functions, structure of null sets, and other problems. Proceedings of the International Congress of Mathematicians, volume 3, Hindustan Book Agency, New Delhi, 2010, pp. 1379–1394. MR 2827846 | Zbl 1251.26010
[2] Bugeaud Y., Dodson M.M., Kristensen S.: Zero-infinity laws in Diophantine approximation. Q.J. Math. 56 (2005), no. 3, 311–320. DOI 10.1093/qmath/hah043 | MR 2161245 | Zbl 1204.11117
[3] Csörnyei M., Preiss D., Tišer J.: Lipschitz functions with unexpectedly large sets of nondifferentiability points. Abstr. Appl. Anal. 2005, no. 4, 361–373. DOI 10.1155/AAA.2005.361 | MR 2202486 | Zbl 1098.26010
[4] Doré M., Maleva O.: A compact null set containing a differentiability point of every Lipschitz function. Math. Ann. 351 (2011), no.3, 633–663. DOI 10.1007/s00208-010-0613-4 | MR 2854108 | Zbl 1239.46035
[5] Doré M., Maleva O.: A universal differentiability set in Banach spaces with separable dual. J. Funct. Anal. 261 (2011), no. 6, 1674–1710. DOI 10.1016/j.jfa.2011.05.016 | MR 2813484 | Zbl 1230.46035
[6] Doré M., Maleva O.: A compact universal differentiability set with Hausdorff dimension one. Israel J. Math. 191 (2012), no. 2, 889–900. DOI 10.1007/s11856-012-0014-3 | MR 3011499 | Zbl 1281.46041
[7] Dymond M.: Differentiability and negligible sets in Banach spaces. PhD Thesis, University of Birmingham, 2014. MR 3389522
[8] Dymond M., Maleva O.: Differentiability inside sets with Minkowski dimension one. Michigan Math. J. 65 (2016), no. 3, 613–636. DOI 10.1307/mmj/1472066151 | MR 3542769 | Zbl 1366.46029
[9] Fowler T., Preiss D.: A simple proof of Zahorski's description of non-differentiability sets of Lipschitz functions. Real Anal. Exchange 34 (2009), no. 1, 127–138. DOI 10.14321/realanalexch.34.1.0127 | MR 2527127 | Zbl 1179.26010
[10] Grafakos L.: Classical Fourier Analysis. third edition, Graduate Texts in Mathematics, 249, Springer, New York, 2014. DOI 10.1007/978-1-4939-1194-3 | MR 3243734 | Zbl 1336.00075
[11] Hájek P., Johanis M.: Smooth Analysis in Banach Spaces. De Gruyter Series in Nonlinear Analysis and Applications, 19, Walter de Gruyter, Berlin, 2014. MR 3244144 | Zbl 1329.00102
[12] Ives D.J., Preiss D.: Not too well differentiable Lipschitz isomorphisms. Israel J. Math. 115 (2000), no. 1, 343–353. DOI 10.1007/BF02810595 | MR 1749687 | Zbl 0951.46019
[13] Maleva O., Preiss D.: Cone unrectifiable sets and non-differentiability of Lipschitz functions. in preparation.
[14] Preiss D.: Differentiability of Lipschitz functions on Banach spaces. J. Funct. Anal. 91 (1990), no. 2, 312–345. DOI 10.1016/0022-1236(90)90147-D | MR 1058975 | Zbl 0872.46026
[15] Preiss D., Speight G.: Differentiability of Lipschitz functions in Lebesgue null sets. Invent. Math. 199 (2014), no. 2, 517–559. DOI 10.1007/s00222-014-0520-5 | MR 3302120 | Zbl 1317.26011
[16] Taylor S.J.: Introduction to Measure and Integration. Cambridge University Press, Cambridge, 1973. Zbl 0277.28001
[17] Zahorski Z.: Sur l'ensemble des points de non-dérivabilité d'une fonction continue. Bull. Soc. Math. France 74 (1946), 147–178. DOI 10.24033/bsmf.1381 | MR 0022592 | Zbl 0061.11302
[18] Zajíček L.: Sets of $\sigma $-porosity and sets of $\sigma $-porosity $(q)$. Časopis Pěst. Mat. 101 (1976), no. 4, 350–359. MR 0457731 | Zbl 0341.30026
[19] Zelený M., Pelant J.: The structure of the $\sigma$-ideal of $\sigma$-porous sets. Comment. Math. Univ. Carolin. 45 (2004), no. 1, 37–72. MR 2076859
Partner of
EuDML logo