[2] Astumian, R. D.: 
How molecular motors work - insights from the molecular machinist’s toolbox: the Nobel prize in Chemistry 2016.  Chem. Sci. 8 (2017), 840–845. 
DOI 10.1039/C6SC04806D[3] Badjic, J. D., Balzani, V., Credi, A., Silvi, S., Stoddart, J. F.: A molecular elevator.  Science 303 (2004), 1845–1849.
[4] Badjic, J. D., Ronconi, C. M., Stoddart, J. F., Balzani, V., Silvi, S., Credi, A.: 
Operating molecular elevators.  J. Amer. Chem. Soc. 128 (2006), 1489–1499. 
DOI 10.1021/ja0543954[5] Browne, W. R., Feringa, B. L.: 
Making molecular machines work.  Nat. Nanotechnol. 1 (2006), 25–35. 
DOI 10.1038/nnano.2006.45[6] Cantrill, S. J., Youn, G. J., Stoddart, J. F., Williams, D. J.: 
Supramolecular daisy chains.  J. Org. Chem. 66 (2001), 6857–6872. 
DOI 10.1021/jo010405h[7] Carroll, G. T., Pollard, M. M., Van Delden, R., Feringa, B. L.: 
Controlled rotary motion of light-driven molecular motors assembled on a gold film.  Chem. Sci. 1 (2010), 97–101. 
DOI 10.1039/c0sc00162g[8] Coskun, A., Banaszak, M., Astumian, R. D., Stoddart, J. F., Grzybowski, B. A.: 
Great expectations: can artificial molecular machines deliver on their promise?.  Chem. Soc. Rev. 41 (2012), 19–30. 
DOI 10.1039/C1CS15262A[9] Coskun, A., Spruell, J. M., Barin, G., Dichtel, W. R., Flood, A. H., Botros, Y. Y., Stoddart, J. F.: 
High hopes: can molecular electronics realise its potential?.  Chem. Soc. Rev. 41 (2012), 4827–4859. 
DOI 10.1039/c2cs35053j[10] Durot, S., Reviriego, F., Sauvage, J. P.: 
Copper-complexed catenanes and rotaxanes in motion: 15 years of molecular machines.  Dalton Trans. 39 (2010), 10557–10570. 
DOI 10.1039/c0dt00457j[11] Erbas-Cakmak, S,, Leigh, D. A., Mcternan, C. T., Nussbaumer, A. L.: Artificial molecular machines.  Chem. Rev. 115 (2015), 10081–10206.
[12] Feringa, B., Wynberg, H.: 
Torsionally distorted olefins. Resolution of cis- and trans-4,4’-Bi-1,1’,2,2’,3,3’-hexahydrophenanthrylidene.  J. Amer. Chem. Soc. 99 (1977), 602–603. 
DOI 10.1021/ja00444a046[13] Huang, T. J., Brough, B., Ho, C. M., Liu, Y., Flood, A. H., Bonvallet, P. A., Tseng, H. R., Stoddart, J. F., Baller, M., Magonov, S.: 
A nanomechanical device based on linear molecular motors.  Appl. Phys. Lett. 85 (2004), 5391–5393. 
DOI 10.1063/1.1826222[15] Iwaso, K., Takashima, Y., Harada, A.: 
Fast response dry-type artificial molecular muscles with c2 daisy chains.  Nat. Chem. 8 (2016), 626–633. 
DOI 10.1038/nchem.2513[18] Kay, E. R., Leigh, D. A., Zerbetto, F.: 
Synthetic molecular motors and mechanical machines.  Angew. Chem. Int. Ed. 46 (2007), 72–191. 
DOI 10.1002/anie.200504313[19] Ko, W. H.: Trends and frontiers of MEMS.  Sens. Actuators A Phys. 136 (2007), 62–67.
[20] Koumura, N., Geertsema, E. M., Meetsma, A., Feringa, B. L.: 
Light-driven molecular rotor: Unidirectional rotation controlled by a single stereogenic center.  J. Amer. Chem. Soc. 122 (2000), 12005–12006. 
DOI 10.1021/ja002755b[21] Kudernac, T., Ruangsupapichat, N., Parschau, M., Macia, B., Katsonis, N., Harutyunyan, S. R., Ernst, K. H., Feringa, B. L.: 
Electrically driven directional motion of a four-wheeled molecule on a metal surface.  Nature 479 (2011), 208–211. 
DOI 10.1038/nature10587[22] Lánský, Z.: Kráčející proteiny v nitru živých buněk.  Pokroky Mat. Fyz. Astronom. 61 (2016) 273–284.
[23] Liu, Y., Flood, A. H., Bonvallett, P. A., Vignon, S. A., Northrop, B. H., Tseng, H. R., Jeppesen, J. O., Huang, T. J., Brough, B., Baller, M., Magonov, S., Solares, S. D., Goddard, W. A., Ho, C. M., Stoddart, J. F.: 
Linear artificial molecular muscles.  J. Amer. Chem. Soc. 127 (2005), 9745–9759. 
DOI 10.1021/ja051088p[24] Pengwang, E., Rabenorosoa, K., Rakotondrabe, M., Andreff, N.: 
Scanning micromirror platform based on MEMS technology for medical application.  Micromachines 7 (2016), paper No. 24, DOI: 10.3390/mi7020024. 
DOI 10.3390/mi7020024[25] Pollard, M. M., Klok, M., Pijper, D., Feringa, B. L.: 
Rate acceleration of light-driven rotary molecular motors.  Adv. Funct. Mater. 17 (2007), 718–729. 
DOI 10.1002/adfm.200601025[26] Pollard, M. M., Ter Wiel, M. K. J., Van Delden, R. A., Vicario, J., Koumura, N., Van Den Brom, C. R., Meetsma, A., Feringa, B. L.: 
Light-driven rotary molecular motors on gold nanoparticles.  Chem. Eur. J. 14 (2008), 11610–11622. 
DOI 10.1002/chem.200800814[28] Vachon, J., Carroll, G. T., Pollard, M. M., Mes, E. M., Brouwer, A. M., Feringa, B. L.: 
An ultrafast surface-bound photo-active molecular motor.  Photochem. Photobiol. Sci. 13 (2014), 241–246. 
DOI 10.1039/C3PP50208B[29] Van Dongen, S. F. M., Cantekin, S., Elemans, J., Rowan, A. E., Nolte, R. J. M.: 
Functional interlocked systems.  Chem. Soc. Rev. 43 (2014), 99–122. 
DOI 10.1039/C3CS60178A[30] Wang, J. B., Feringa, B. L.: 
Dynamic control of chiral space in a catalytic asymmetric reaction using a molecular motor.  Science 331 (2011), 1429–1432. 
DOI 10.1126/science.1199844[31] Xue, M., Yang, Y., Chi, X. D., Yan, X. Z., Huang, F. H.: 
Development of pseudorotaxanes and rotaxanes: from synthesis to stimuli-responsive motions to applications.  Chem. Rev. 115 (2015), 7398–7501. 
DOI 10.1021/cr5005869