Previous |  Up |  Next

Article

Title: Generalized convexities related to aggregation operators of fuzzy sets (English)
Author: Díaz, Susana
Author: Induráin, Esteban
Author: Janiš, Vladimír
Author: Llinares, Juan Vicente
Author: Montes, Susana
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 3
Year: 2017
Pages: 383-393
Summary lang: English
.
Category: math
.
Summary: We analyze the existence of fuzzy sets of a universe that are convex with respect to certain particular classes of fusion operators that merge two fuzzy sets. In addition, we study aggregation operators that preserve various classes of generalized convexity on fuzzy sets. We focus our study on fuzzy subsets of the real line, so that given a mapping $F: [0,1] \times [0,1] \rightarrow [0,1]$, a fuzzy subset, say $X$, of the real line is said to be $F$-convex if for any $x, y, z \in \mathbb{R}$ such that $x \le y \le z$, it holds that $\mu_X(y) \ge F(\mu_X(x),\mu_X(z))$, where $\mu_X: \mathbb{R} \rightarrow [0,1]$ stands here for the membership function that defines the fuzzy set $X$. We study the existence of such sets paying attention to different classes of aggregation operators (that is, the corresponding functions $F$, as above), and preserving $F$-convexity under aggregation of fuzzy sets. Among those typical classes, triangular norms $T$ will be analyzed, giving rise to the concept of norm convexity or $T$-convexity, as a particular case of $F$-convexity. Other different kinds of generalized convexities will also be discussed as a by-product. (English)
Keyword: fuzzy sets
Keyword: convexity and its generalizations
Keyword: aggregation functions
Keyword: fusion operators
Keyword: triangular norms
MSC: 03E72
MSC: 26A51
idZBL: Zbl 06819614
idMR: MR3684676
DOI: 10.14736/kyb-2017-3-0383
.
Date available: 2017-11-12T09:37:48Z
Last updated: 2018-01-10
Stable URL: http://hdl.handle.net/10338.dmlcz/146932
.
Reference: [1] Ammar, E., Metz, J.: On fuzzy convexity and parametric fuzzy optimization..Fuzzy Sets and Systems 49 (1992), 135-141. MR 1179741, 10.1016/0165-0114(92)90319-y
Reference: [2] Beckenbach, E. F.: Generalized convex functions..Bull. Amer. Math. Soc. 43 (1937), 363-371. MR 1563543, 10.1090/s0002-9904-1937-06549-9
Reference: [3] Chalco-Cano, Y., Rufián-Lizana, A., Román-Flores, H., Osuna-Gómez, R.: A note on generalized convexity for fuzzy mappings through a linear ordering..Fuzzy Sets and Systems 231 (2013), 70-83. MR 3111894, 10.1016/j.fss.2013.07.001
Reference: [4] S., S. Díaz, Induráin, E., Janiš, V., Montes, S.: Aggregation of convex intuitionistic fuzzy sets..Inform. Sci. 308 (2015), 61-71. MR 3327115, 10.1016/j.ins.2015.03.003
Reference: [5] Dugundji, J.: Topology..Allyn and Bacon, Boston 1966. MR 0193606
Reference: [6] Froda, A.: Sur la Distribution des Propriétés de Voisinage des Fonctions de Variables Réelles..Thèse, Hermann, Paris 1929. MR 3532965
Reference: [7] Grabisch, M., Marichal, J.-L., Mesiar, R., Pap, E.: Aggregation Functions..Encyclopedia of Mathematics and its Applications, Cambridge University Press 2009. Zbl 1206.68299, MR 2538324, 10.1017/cbo9781139644150
Reference: [8] Horvath, Ch. D.: Contractibility and generalized convexity..J. Math. Anal. Appl. 156 (1991), 2, 341-357. MR 1103017, 10.1016/0022-247x(91)90402-l
Reference: [9] Iglesias, T., Montes, I., Janiš, V., Montes, S.: $T$-convexity for lattice-valued fuzzy sets..In: Proc. ESTYLF Conference, 2012.
Reference: [10] Janiš, V., Král', P., Renčová, M.: Aggregation operators preserving quasiconvexity..Inform. Sci. 228 (2013), 37-44. MR 3018702, 10.1016/j.ins.2012.12.003
Reference: [11] Janiš, V., Montes, S., Iglesias, T.: Aggregation of weakly quasi-convex fuzzy sets..In: Communications in Computer and Information Science: 14th International Conference on Information Processing and Management of Uncertainty in Knowledge-Based Systems IPMU 2012, Catania 2012, pp. 353-359. 10.1007/978-3-642-31718-7_37
Reference: [12] Liu, X.-W., He, D.: Equivalent conditions of generalized convex fuzzy mappings..The Scientific World Journal 2014 (2014), 1-5. 10.1155/2014/412534
Reference: [13] Llinares, J. V.: Abstract convexity, some relations and applications..Optimization 51 (2002), 6, 797-818. MR 1941715, 10.1080/0233193021000015587
Reference: [14] Saminger-Platz, S., Mesiar, R., Bodenhofer, U.: Domination of aggregation operators and preservation of transitivity..Int. J. Uncertainty, Fuzziness and Knowledge-Based Systems 10(2002), Suppl., 11-35. MR 1962666, 10.1142/s0218488502001806
Reference: [15] Saminger-Platz, S., Mesiar, R., Dubois, D.: Aggregation operators and commuting..IEEE Trans. Fuzzy Systems 15 (2007), 6, 1032-1045. 10.1109/tfuzz.2006.890687
Reference: [16] Syau, Y. R.: Some properties of weakly convex fuzzy mappings..Fuzzy Sets and Systems 123 (2001), 203-207. MR 1849405, 10.1016/s0165-0114(00)00090-7
Reference: [17] Wu, S.-Y., Cheng, W.-H.: A note on fuzzy convexity..Appl. Math. Lett. 17 (2004), 1124-1133. MR 2091846, 10.1016/j.aml.2003.11.003
Reference: [18] Yuan, X.-H., Lee, E. S.: The definition of convex fuzzy set..Comp. Math. Appl. 47 (2004), 1, 101-113. MR 2062729, 10.1016/s0898-1221(04)90009-0
Reference: [19] Zadeh, L. A.: Fuzzy sets..Inform. Control 8 (1965), 338-353. Zbl 0942.00007, MR 0219427, 10.1016/s0019-9958(65)90241-x
.

Files

Files Size Format View
Kybernetika_53-2017-3_1.pdf 327.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo