Previous |  Up |  Next

Article

Title: Existence and global attractivity of positive almost periodic solutions for a kind of fishing model with pure-delay (English)
Author: Zhang, Tianwei
Author: Liao, Yongzhi
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 612-629
Summary lang: English
.
Category: math
.
Summary: By using some analytical techniques, modified inequalities and Mawhin's continuation theorem of coincidence degree theory, some sufficient conditions for the existence of at least one positive almost periodic solution of a kind of fishing model with delay are obtained. Further, the global attractivity of the positive almost periodic solution of this model is also considered. Finally, three examples are given to illustrate the main results of this paper. (English)
Keyword: almost periodic solution
Keyword: coincidence degree
Keyword: fishing model
Keyword: global attractivity
MSC: 34K13
MSC: 92D25
idZBL: Zbl 06819627
idMR: MR3730255
DOI: 10.14736/kyb-2017-4-0612
.
Date available: 2017-11-12T09:56:07Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/146947
.
Reference: [1] Berezansky, L., Braverman, E., Idels, L.: On delay differential equations with Hills type growth rate and linear harvesting..Comput. Math. Appl. 49 (2005), 549-563. MR 2124386, 10.1016/j.camwa.2004.07.015
Reference: [2] Berezansky, L., Idels, L.: Stability of a time-varying fishing model with delay..Appl. Math. Lett. 21 (2008), 447-452. MR 2402835, 10.1016/j.aml.2007.03.027
Reference: [3] Dai, B. X., Su, H., Hu, D. W.: Periodic solution of a delayed ratio-dependent predator-prey model with monotonic functional response and impulse..Nonlinear Anal. TMA 70 (2009), 126-134. MR 2468223, 10.1016/j.na.2007.11.036
Reference: [4] Du, B., Hu, M., Lian, X.: Dynamical behavior for a stochastic predator-prey model with HV type functional response..Bull. Malays. Math. Sci. Soc. 40 (2016), 1, 487-503. MR 3592918, 10.1007/s40840-016-0325-3
Reference: [5] Du, B., Liu, Y., Batarfi, H. A.: Almost periodic solution for a neutral-type neural networks with distributed leakage delays on time scales..Neurocomputing 173 (2016), 921-929. 10.1016/j.neucom.2015.08.047
Reference: [6] Du, B., Liu, Y., Atiatallah, A. I.: Existence and asymptotic behavior results of periodic solution for discrete-ime neutral-type neural networks..J. Franklin Inst., Engrg. Appl. Math. 353 (2016), 448-461. MR 3448152, 10.1016/j.jfranklin.2015.11.013
Reference: [7] Egami, C.: Positive periodic solutions of nonautonomous delay competitive systems with weak Allee effect..Nonlinear Anal. RWA 10 (2009), 494-505. MR 2451726, 10.1016/j.nonrwa.2007.10.010
Reference: [8] Fan, Y. H., Wang, L. L.: Periodic solutions in a delayed predator-prey model with nonmonotonic functional response..Nonlinear Anal. RWA 10 (2009), 3275-3284. MR 2523287, 10.1016/j.nonrwa.2008.10.032
Reference: [9] Fink, A. M.: Almost Periodic Differential Equation..Spring-Verlag, Berlin, Heidleberg, New York, 1974. MR 0460799, 10.1007/bfb0070324
Reference: [10] Gaines, R., Mawhin, J.: Coincidence Degree and Nonlinear Differential Equations..Springer Verlag, Berlin 1977. MR 0637067, 10.1007/bfb0089537
Reference: [11] Gopalsamy, K.: Stability and Oscillations in Delay Differential Equations of Population Dynamics..Kluwer Acad. Publ., 1992. MR 1163190, 10.1007/978-94-015-7920-9
Reference: [12] He, C. Y.: Almost Periodic Differential Equations..Higher Education Publishing House, Beijing, 1992 (in Chinese).
Reference: [13] Kot, M.: Elements of Mathematical Ecology..Cambr. Univ. Press, 2001. MR 2006645, 10.1017/cbo9780511608520
Reference: [14] Kuang, Y.: Delay Differential Equations With Applications in Population Dynamics..Academic Press, Inc., 1993. Zbl 0777.34002, MR 1218880, 10.1016/s0076-5392(08)x6164-8
Reference: [15] Liang, R. X., Shen, J. H.: Positive periodic solutions for impulsive predator-prey model with dispersion and time delays..Appl. Math. Comput. 217 (2010), 661-676. MR 2678579, 10.1016/j.amc.2010.06.003
Reference: [16] Liao, Y. Z., Zhang, T. W.: Almost periodic solutions of a discrete mutualism model with variable delays..Discrete Dynamics in Nature and Society Volume 2012, Article ID 742102, 27 pages. MR 3008486, 10.1155/2012/742102
Reference: [17] Lin, X. L., Jiang, Y. L., Wang, X. Q.: Existence of periodic solutions in predator-prey with Watt-type functional response and impulsive effects..Nonlinear Anal. TMA 73 (2010), 1684-1697. MR 2661351, 10.1016/j.na.2010.05.003
Reference: [18] Lu, S.: Applications of topological degree associated condensing field to the existence of periodic solutions for neutral functional differential equations with nonlinear difference operator..Acta Mathematica Sinica, English Series, to appear. MR 3568082
Reference: [19] Lu, S., Zhong, T., Chen, L.: Periodic solutions for $p$-Laplacian Rayleigh equations with singularities..Boundary Value Problems 2016, 96 (2016). MR 3499658
Reference: [20] Lu, S., Chen, L.: The problem of existence of periodic solutions for neutral functional differential system with nonlinear difference operator..J. Math. Anal. Appl. 387 (2012), 1127-1136. MR 2853200, 10.1016/j.jmaa.2011.10.022
Reference: [21] Shu, J. Y., Zhang, T. W.: Multiplicity of almost periodic oscillations in a harvesting mutualism model with time delays..Dynam. Cont. Disc. Impul. Sys. B: Appl. Algor. 20 (2013), 463-483. MR 3135007
Reference: [22] Wang, K.: Existence and global asymptotic stability of positive periodic solution for a predator-prey system with mutual interference..Nonlinear Anal. RWA 10 (2009), 2774-2783. MR 2523240, 10.1016/j.nonrwa.2008.08.015
Reference: [23] Wang, X. P.: Stability and existence of periodic solutions for a time-varying fishing model with delay..Nonlinear Anal.: RWA 11 (2010), 3309-3315. MR 2683790, 10.1016/j.nonrwa.2009.11.023
Reference: [24] Wang, K.: Periodic solutions to a delayed predator-prey model with Hassell-Varley type functional response..Nonlinear Anal. RWA 12 (2011), 137-145. MR 2728669, 10.1016/j.nonrwa.2010.06.003
Reference: [25] Wang, Q., Ding, M. M., Wang, Z. J., Zhang, H. Y.: Existence and attractivity of a periodic solution for an $N$-species Gilpin-Ayala impulsive competition system..Nonlinear Anal. RWA 11 (2010), 2675-2685. MR 2661935, 10.1016/j.nonrwa.2008.08.015
Reference: [26] Zhang, T. W.: Multiplicity of positive almost periodic solutions in a delayed Hassell-Varleytype predator-prey model with harvesting on prey..Math. Meth. Appl. Sci. 37 (2013), 686-697. MR 3180630, 10.1002/mma.2826
Reference: [27] Zhang, T. W.: Almost periodic oscillations in a generalized Mackey-Glass model of respiratory dynamics with several delays..Int. J. Biomath. 7 (2014), 1450029 (22 pages). MR 3210478, 10.1142/s1793524514500296
Reference: [28] Zhang, T. W., Gan, X. R.: Existence and permanence of almost periodic solutions for Leslie-Gower predator-prey model with variable delays..Elect. J. Differ. Equa. 2013 (2013), 1-21. MR 3065058
Reference: [29] Zhang, T. W., Gan, X. R.: Almost periodic solutions for a discrete fishing model with feedback control and time delays..Commun. Nonlinear Sci. Numer. Simul. 19 (2014), 150-163. MR 3142456, 10.1016/j.cnsns.2013.06.019
Reference: [30] Zhang, T. W., Li, Y. K.: Positive periodic solutions for a generalized impulsive $n$-species Gilpin-Ayala competition system with continuously distributed delays on time scales..Int. J. Biomath. 4 (2011), 23-34. MR 2795143, 10.1142/s1793524511001131
Reference: [31] Zhang, T. W., Li, Y. K., Ye, Y.: On the existence and stability of a unique almost periodic solution of Schoener's competition model with pure-delays and impulsive effects..Commun. Nonlinear Sci. Numer. Simul. 17 (2012), 1408-1422. MR 2843805, 10.1016/j.cnsns.2011.08.008
Reference: [32] Zhang, T. W., Li, Y. K., Ye, Y.: Persistence and almost periodic solutions for a discrete fishing model with feedback control..Commun. Nonlinear Sci. Numer. Simul. 16 (2011), 1564-1573. MR 2736833, 10.1016/j.cnsns.2010.06.033
Reference: [33] Zhang, G. D., Shen, Y., Chen, B. S.: Positive periodic solutions in a non-selective harvesting predator-prey model with multiple delays..J. Math. Anal. Appl. 395 (2012), 298-306. MR 2943624, 10.1016/j.jmaa.2012.05.045
Reference: [34] Zhu, Y. L., Wang, K.: Existence and global attractivity of positive periodic solutions for a predator-prey model with modified Leslie-Gower Holling-type II schemes..J. Math. Anal. Appl. 384 (2011), 400-408. MR 2825193, 10.1016/j.jmaa.2011.05.081
.

Files

Files Size Format View
Kybernetika_53-2017-4_4.pdf 390.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo