Previous |  Up |  Next

Article

Title: Tube-MPC for a class of uncertain continuous nonlinear systems with application to surge problem (English)
Author: Taleb Ziabari, Masoud
Author: Jahed-Motlagh, Mohammad Reza
Author: Salahshoor, Karim
Author: Ramezani, Amin
Author: Moarefianpour, Ali
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 679-693
Summary lang: English
.
Category: math
.
Summary: This paper presents a new robust adaptive model predictive control for a special class of continuous-time non-linear systems with uncertainty. These systems have bounded disturbances with unknown upper bound, as well as constraints on input states. An adaptive control is used in the new controller to estimate the system uncertainty. Also, to avoid the system disturbances, a $H_{\infty }$ method is employed to find the appropriate gain in Tube-MPC. Finally, a surge avoidance problem in centrifugal compressors is solved to show the efficiency and effectiveness of the proposed algorithm. (English)
Keyword: robust control
Keyword: adaptive control
Keyword: $H_{\infty }$ method
Keyword: tube-MPC
Keyword: surge
MSC: 37N35
MSC: 93C10
MSC: 93C40
MSC: 93C42
MSC: 93D09
idZBL: Zbl 06819630
idMR: MR3730258
DOI: 10.14736/kyb-2017-4-0679
.
Date available: 2017-11-12T10:01:10Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/146950
.
Reference: [1] Bindlish, R.: Nonlinear model predictive control of an industrial polymerization process..Computers Chemical Engrg. 73 (2015), 43-48. 10.1016/j.compchemeng.2014.11.001
Reference: [2] Cuzzola, F. A., Geromel, J. C., Morari, M.: An improved approach for constrained robust model predictive control..Automatica 38 (2002), 1183-1189. MR 2133479, 10.1016/s0005-1098(02)00012-2
Reference: [3] Ding, B., Zou, T.: A synthesis approach for output feedback robust model predictive control based-on input-output model..J. Process Control 24 (2014), 60-72. 10.1016/j.jprocont.2013.12.006
Reference: [4] Ghanavati, M., Chakravarthy, A.: Demand-side energy management by use of a design-then-approximate controller for aggregated thermostatic loads..In: Amer. Control Conference (ACC), Chicago 2015. 10.1109/acc.2015.7171900
Reference: [5] Ghanavati, M., Chakravarthy, A.: Demand-side energy management using an adaptive control strategy for aggregate thermostatic loads..In: AIAA SciTech Forum 2015, pp. 1-7. 10.2514/6.2015-0121
Reference: [6] Ghanavati, M., Mobayen, S., Majd, V. J.: A new robust model predictive control strategy for rotational inverted pendulum system..In: Int. Siberian Conference on Control and Communications (SIBCON) 2011, pp. 33-38. 10.1109/sibcon.2011.6072589
Reference: [7] Gravdahl, J. T., Egeland, O.: Compressor Surge and Rotating Stall: Modeling and Control..Springer-Verlag, London 1999. 10.1007/978-1-4471-0827-6
Reference: [8] Greitzer, E. M.: Surge and rotating stall in axial flow compressors. Part I: Theoretical compression system model..ASME J. Engrg. for Power 98 (1976), 2, 191-198. 10.1115/1.3446138
Reference: [9] Gu, B., Gupta, Y. P.: Control of nonlinear processes by using linear model predictive control algorithms..ISA Trans. 47 (2008), 211-216. 10.1016/j.isatra.2007.12.002
Reference: [10] He, D. F., Huang, H., Chen, Q. X.: Quasi-min-max MPC for constrained nonlinear systems with guaranteed input-to-state stability..J. Franklin Inst. 351 (2014), 3405-3423. MR 3201039, 10.1016/j.jfranklin.2014.03.006
Reference: [11] Kothare, M. V., Balakrishnan, V., Morari, M.: Robust constrained model predictive control using linear matrix inequalities..Automatica 32 (1996), 1361-1379. MR 1420038, 10.1016/0005-1098(96)00063-5
Reference: [12] Kouvaritakis, B., Rossiter, J. A., Schuurmans, J.: Efficient robust predictive control..IEEE Trans. Automat. Control 45 (2000), 1545-1549. MR 1797413, 10.1109/9.871769
Reference: [13] Magni, L., Nicolao, G. De, Magnani, L., Scattolini, R.: A stabilizing model based predictive control algorithm for nonlinear systems..Automatica 37 (2001), 1351-1362. MR 2110338, 10.1016/s0005-1098(01)00083-8
Reference: [14] Moore, F. K., Greitzer, E. M.: A theory of post-stall transientin axial compression systems: Part I - Development of equations..ASME J. Engrg. for Gas Turbines and Power 108 (1986), 68-76. 10.1115/1.3239887
Reference: [15] Poursafar, N., Taghirad, H. D., Haeri, M.: Model predictive control of nonlinear discrete time systems: a linear matrix inequality approach..IET Proc. Control Theory Appl. 4 (2010), 1922-1932. MR 2760324, 10.1049/iet-cta.2009.0650
Reference: [16] Razi, M., Haeri, M.: Design of a robust model predictive controller with reduced computational complexity..ISA Trans. 53 (2014), 1754-1759. 10.1016/j.isatra.2014.09.008
Reference: [17] Shamaghdari, S., Nikravesh, S. K. Y., Haeri, M.: Integrated guidance and control of elastic flight vehicle based on robust MPC..Int. J. Robust Nonlinear Control 25 (2015), 2608-2630. MR 3397713, 10.1002/rnc.3215
Reference: [18] Sheng, H., Huang, W., Zhang, T., Huang, X.: Robust Adaptive Fuzzy Control of Compressor Surge Using Backstepping..Arabian J. Science and Engrg. 39 (2014), 9301-9308. 10.1007/s13369-014-1448-1
Reference: [19] Wang, L. X.: Adaptive Fuzzy Systems and Control: Design and Stability Analysis..Prentice-Hall, Englewood Cliffs 1994.
Reference: [20] Yu, S. Y., Bohm, C., Chen, H., Allgower, F.: Robust model predictive control with disturbance invariant sets..In: Proc. Amer. Contr. Conf., Baltimore 2010, pp. 6262-6267. 10.1109/acc.2010.5531520
Reference: [21] Yu, S., Maier, C., Chen, H., Allgower, F.: Tube MPC scheme based on robust control invariant set with application to Lipschitz nonlinear systems..Systems Control Lett. 62 (2013), 194-200. MR 3017875, 10.1016/j.sysconle.2012.11.004
Reference: [22] Zheng, P., Li, D., Xi, Y., Zhang, J.: Improved model prediction and RMPC design for LPV systems with bounded parameter changes..Automatica 49 (2013), 3695-3699. MR 3127581, 10.1016/j.automatica.2013.09.024
.

Files

Files Size Format View
Kybernetika_53-2017-4_7.pdf 1.145Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo