Previous |  Up |  Next

Article

Title: Intertwining of the Wright-Fisher diffusion (English)
Author: Hudec, Tobiáš
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 4
Year: 2017
Pages: 730-746
Summary lang: English
.
Category: math
.
Summary: It is known that the time until a birth and death process reaches a certain level is distributed as a sum of independent exponential random variables. Diaconis, Miclo and Swart gave a probabilistic proof of this fact by coupling the birth and death process with a pure birth process such that the two processes reach the given level at the same time. Their coupling is of a special type called intertwining of Markov processes. We apply this technique to couple the Wright-Fisher diffusion with reflection at $0$ and a pure birth process. We show that in our coupling the time of absorption of the diffusion is a. s. equal to the time of explosion of the pure birth process. The coupling also allows us to interpret the diffusion as being initially reluctant to get absorbed, but later getting more and more compelled to get absorbed. (English)
Keyword: intertwining of Markov processes
Keyword: Wright–Fisher diffusion
Keyword: pure birth process
Keyword: time of absorption
Keyword: coupling
MSC: 60J27
MSC: 60J35
MSC: 60J60
idZBL: Zbl 06819633
idMR: MR3730261
DOI: 10.14736/kyb-2017-4-0730
.
Date available: 2017-11-12T10:04:52Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/146953
.
Reference: [1] Diaconis, P., Fill, J. A.: Strong stationary times via a new form of duality..Ann. Probab. 18 (1990), 4, 1483-1522. MR 1071805, 10.1214/aop/1176990628
Reference: [2] Diaconis, P., Miclo, L.: On times to quasi-stationarity for birth and death processes..J. Theoret. Probab. 22 (2009), 3, 558-586. MR 2530103, 10.1007/s10959-009-0234-6
Reference: [3] Ethier, S. N., Kurtz, T. G.: Markov Processes: Characterization and Convergence..John Wiley and Sons, 1986. MR 0838085, 10.1002/9780470316658
Reference: [4] Fill, J. A.: Strong stationary duality for continuous-time markov chains. Part I: Theory..J. Theoret. Probab. 5 (1992), 1, 45-70. MR 1144727, 10.1007/bf01046778
Reference: [5] Fill, J. A., Lyzinski, V.: Strong stationary duality for diffusion processes..J. Theoret. Probab. 29 (2016), 4, 1298-1338. MR 3571247, 10.1007/s10959-015-0612-1
Reference: [6] Hudec, T.: Absorption Cascades of One-dimensional Diffusions..Master's Thesis, Charles University in Prague, 2016.
Reference: [7] Karlin, S., McGregor, J.: Coincidence properties of birth and death processes..Pacific J. Math. 9 (1959), 4, 1109-1140. MR 0114247, 10.2140/pjm.1959.9.1109
Reference: [8] Kent, J. T.: The spectral decomposition of a diffusion hitting time..Ann. Probab. 10 (1082), 1, 207-219. MR 0637387, 10.1214/aop/1176993924
Reference: [9] Liggett, T. M.: Continuous Time Markov Processes: An Introduction..American Mathematical Soc., 2010. MR 2574430, 10.1090/gsm/113
Reference: [10] Mandl, P.: Analytical Treatment of One-dimensional Markov Processes..Springer, 1968. MR 0247667
Reference: [11] Rogers, L. C. G., Pitman, J. W.: Markov functions..Ann. Probab. 9 (1981), 4, 573-582. MR 0624684, 10.1214/aop/1176994363
Reference: [12] Swart, J. M.: Intertwining of birth-and-death processes..Kybernetika 47 (2011), 1, 1-14. MR 2807860
.

Files

Files Size Format View
Kybernetika_53-2017-4_10.pdf 372.9Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo