Previous |  Up |  Next

Article

Title: Multistage risk premiums in portfolio optimization (English)
Author: Kopa, Miloš
Author: Petrová, Barbora
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 53
Issue: 6
Year: 2017
Pages: 992-1011
Summary lang: English
.
Category: math
.
Summary: This paper deals with a multistage stochastic programming portfolio selection problem with a new type of risk premium constraints. These risk premiums are constructed on the multistage scenario tree. Two ways of the construction are introduced and compared. The risk premiums are incorporated in the multistage stochastic programming portfolio selection problem. The problem maximizes the multivariate (multiperiod) utility function under condition that the multistage risk premiums are smaller than a prescribed level. The problem does not assume any separability of the multiperiod utility function. The performance of the suggested models is demonstrated for several kinds of multiperiod utility functions and several formulations of the multistage risk premium constraints. In all cases, including the risk premium constraints avoids the riskier positions. (English)
Keyword: multistage risk premium
Keyword: utility function
Keyword: portfolio optimization
Keyword: multistage stochastic programming
MSC: 91B28
MSC: 91B30
idZBL: Zbl 06861637
idMR: MR3758931
DOI: 10.14736/kyb-2017-6-0992
.
Date available: 2018-02-26T11:22:27Z
Last updated: 2018-05-25
Stable URL: http://hdl.handle.net/10338.dmlcz/147081
.
Reference: [1] Ambarish, R., Kallberg, J. G.: Multivariate risk premiums..Theory Decision 22 (1987), 77-96. MR 0874520, 10.1007/bf00125658
Reference: [2] Branda, M., Kopa, M.: Dea models equivalent to general n-th order stochastic dominance efficiency tests..Oper. Res. Lett.44 (2016), 285-289. MR 3466671, 10.1016/j.orl.2016.02.007
Reference: [3] Duncan, G. T.: A matrix measure of multivariate local risk aversion..Econometrica 45 (1977), 895-903. Zbl 0367.90017, MR 0496493, 10.2307/1912680
Reference: [4] Dupačová, J., Kopa, M.: Robustness of optimal portfolios under risk and stochastic dominance constraints..Europ. J. Oper. Res. 234 (2014), 2, 434-441. MR 3144732, 10.1016/j.ejor.2013.06.018
Reference: [5] Dupačová, J., Hurt, J., Štěpán, J.: Stochastic Modeling in Economics and Finance..Kluwer, 2002. MR 2008457
Reference: [6] Høyland, K., Kaut, M., Wallace, S. W.: A heuristic for moment-matching scenario generation..Comput. Optim. Appl. 24 (2003), 2-3, 169-185. Zbl 1094.90579, MR 1969151, 10.1023/a:1021853807313
Reference: [7] French, K. R.: 6 portfolios formed on size and book-to-market (2 $\times$ 3)..
Reference: [8] Kihlstrom, R. E., Mirman, L. J.: Risk aversion with many commodities..J. Econom. Theory 8 (1974), 361-388. MR 0496471, 10.1016/0022-0531(74)90091-x
Reference: [9] Kopa, M., Moriggia, V., Vitali, S.: Individual optimal pension allocation under stochastic dominance constraints..Ann. Oper. Res. 260 (2018), 1-2, 255-291. MR 3741562, 10.1007/s10479-016-2387-x
Reference: [10] Post, T., Kopa, M.: Portfolio choice based on third-degree stochastic dominance..Management Sci. 63 (2017), 10, 3381-3392. 10.1287/mnsc.2016.2506
Reference: [11] Post, T., Fang, Y., Kopa, M.: Linear tests for decreasing absolute risk aversion stochastic dominance..Management Sci. 61 (2015), 7, 1615-1629. 10.1287/mnsc.2014.1960
Reference: [12] Pratt, J. W.: Risk aversion in the small and the large..Econometrica 32 (1064), 122-136. 10.2307/1913738
Reference: [13] Richard, S. F.: Multivariate risk aversion, utility dependence and separable utility functions..Management Sci. 21 (1975), 12-21. MR 0436907, 10.1287/mnsc.22.1.12
Reference: [14] Rockafellar, R. T., Uryasev, S.: Conditional value-at-risk for general loss distributions..J. Banking Finance 26 (2002), 1443-1471. 10.1016/s0378-4266(02)00271-6
Reference: [15] Shapiro, A., Dentcheva, D., Ruszczynski, A.: Lectures on Stochastic Programming..SIAM, Philadelphia 2009. MR 2562798, 10.1137/1.9780898718751
Reference: [16] Šmíd, M., Kopa, M.: Dynamic model of market with uninformed market maker.Kybernetika 53 (2017), 5, 922-958. 10.14736/kyb-2017-5-0922
Reference: [17] Vitali, S., Moriggia, V., Kopa, M.: Optimal pension fund composition for an italian private pension plan sponsor..Comput. Management Sci. 14 (2017), 1, 135-160. MR 3599603, 10.1137/1.9780898718751
.

Files

Files Size Format View
Kybernetika_53-2017-6_3.pdf 1.281Mb application/pdf View/Open
Back to standard record
Partner of
EuDML logo