Previous |  Up |  Next


complex structures; energy functional; isotropic almost complex structure; unit tangent bundle; variational problem; tension field
Isotropic almost complex structures $J_{\delta , \sigma }$ define a class of Riemannian metrics $g_{\delta , \sigma }$ on tangent bundles of Riemannian manifolds which are a generalization of the Sasaki metric. In this paper, some results will be obtained on the integrability of these almost complex structures and the notion of a harmonic unit vector field will be introduced with respect to the metrics $g_{\delta , 0}$. Furthermore, the necessary and sufficient conditions for a unit vector field to be a harmonic unit vector field will be obtained.
[1] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonicity of unit vector fields with respect to Riemannian g-natural metrics. Differential Geom. Appl. 27 (2009), 157–169. DOI 10.1016/j.difgeo.2008.06.016 | MR 2488999
[2] Abbassi, M.T.K., Calvaruso, G., Perrone, D.: Harmonic sections of tangent bundles equipped with Riemannian g-natural metrics. Quart. J. Math. 62 (2011), 259–288. DOI 10.1093/qmath/hap040 | MR 2805204
[3] Abbassi, M.T.K., Sarih, M.: On some hereditary properties of Riemannian g-natural metrics on tangent bundles of Riemannian manifolds. Differential Geom. Appl. 22 (2005), 19–47. MR 2106375
[4] Aguilar, R.M.: Isotropic almost complex structures on tangent bundles. Manuscripta Math. 90 (1996), 429–436. DOI 10.1007/BF02568316 | MR 1403714
[5] Baghban, A., Abedi, E.: On the harmonic vector fields. $8$th Seminar on Geometry and Topology, Amirkabir University of Technology, 2015.
[6] Bouzir, H., Beldjilali, G., Belkhelfa, M., Wade, A.: Generalized kahler manifolds and transformation of generalized contact structures. Arch. Math. (Brno) 53 (2017), 35–48. DOI 10.5817/AM2017-1-35 | MR 3636680
[7] Calvaruso, G.: Harmonicity properties of invariant vector fields on three-dimensional Lorentzian Lie groups. J. Geom. Phys. 61 (2011), 498–515. DOI 10.1016/j.geomphys.2010.11.001 | MR 2746133
[8] Calvaruso, G.: Harmonicity of vector fields on four-dimensional generalized symmetric spaces. Central Eur. J. Math. 10 (2012), 411–425. DOI 10.2478/s11533-011-0109-9 | MR 2886549
[9] Dragomir, S., Perrone, D.: Harmonic vector fields, Variational Principles and Differential Geometry. Elsevier, 2012. MR 3286434
[10] Friswell, R.M.: Harmonic vector fields on pseudo-Riemannian manifolds. Ph.D. thesis, 2014.
[11] Friswell, R.M., Wood, C.M.: Harmonic vector fields on pseudo-Riemannian manifolds. J. Geom. Phys. 112 (2017), 45–58. DOI 10.1016/j.geomphys.2016.10.015 | MR 3588756
[12] Gil-Medrano, O.: Relationship between volume and energy of unit vector fields. Differential Geom. Appl. 15 (2001), 137–152. DOI 10.1016/S0926-2245(01)00053-5 | MR 1857559
[13] Sasaki, S.: On the differential geometry of tangent bundles of Riemannian manifolds. Tôhoku Math. J. 10, 338–354. DOI 10.2748/tmj/1178244668 | MR 0112152
[14] Urakawa, H.: Calculus of variations and harmonic maps. American Mathematical Society, 1993. MR 1252178
Partner of
EuDML logo