Previous |  Up |  Next

Article

Title: Relatively pseudocomplemented posets (English)
Author: Chajda, Ivan
Author: Länger, Helmut
Language: English
Journal: Mathematica Bohemica
ISSN: 0862-7959 (print)
ISSN: 2464-7136 (online)
Volume: 143
Issue: 1
Year: 2018
Pages: 89-97
Summary lang: English
.
Category: math
.
Summary: We extend the notion of a relatively pseudocomplemented meet-semilattice to arbitrary posets. We show some properties of the binary operation of relative pseudocomplementation and provide some corresponding characterizations. We show that relatively pseudocomplemented posets satisfying a certain simple identity in two variables are join-semilattices. Finally, we show that every relatively pseudocomplemented poset is distributive and that the converse holds for posets satisfying the ascending chain condition and one more natural condition. Suitable examples are provided. (English)
Keyword: relatively pseudocomplemented poset
Keyword: join-semilattice
Keyword: distributive poset
MSC: 06A06
MSC: 06A11
MSC: 06D15
idZBL: Zbl 06861593
idMR: MR3778051
DOI: 10.21136/MB.2017.0037-16
.
Date available: 2018-03-19T10:35:15Z
Last updated: 2020-07-01
Stable URL: http://hdl.handle.net/10338.dmlcz/147143
.
Reference: [1] Balbes, R.: On free pseudo-complemented and relatively pseudo-complemented semi-lattices.Fundam. Math. 78 (1973), 119-131. Zbl 0277.06001, MR 0319832, 10.4064/fm-78-2-119-131
Reference: [2] Chajda, I.: An extension of relative pseudocomplementation to non-distributive lattices.Acta Sci. Math. 69 (2003), 491-496. Zbl 1048.06005, MR 2034188
Reference: [3] Chajda, I.: Relatively pseudocomplemented directoids.Commentat. Math. Univ. Carol. 50 (2009), 349-357. Zbl 1212.06004, MR 2573409
Reference: [4] Chajda, I.: Pseudocomplemented and Stone posets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 51 (2012), 29-34. Zbl 1302.06001, MR 3060006
Reference: [5] Chajda, I., Halaš, R., Kühr, J.: Semilattice Structures.Research and Exposition in Mathematics 30. Heldermann, Lemgo (2007). Zbl 1117.06001, MR 2326262
Reference: [6] Chajda, I., Kolařík, M., Švrček, F.: Properties of relatively pseudocomplemented directoids.Math. Bohem. 136 (2011), 9-23. Zbl 1224.06006, MR 2807704
Reference: [7] Chajda, I., Länger, H.: Directoids. An Algebraic Approach to Ordered Sets.Research and Exposition in Mathematics 32. Heldermann, Lemgo (2011). Zbl 1254.06002, MR 2850357
Reference: [8] Chajda, I., Rachůnek, J.: Forbidden configurations for distributive and modular ordered sets.Order 5 (1989), 407-423. Zbl 0674.06003, MR 1010389, 10.1007/BF00353659
Reference: [9] C\=ırulis, J.: Implication in sectionally pseudocomplemented posets.Acta Sci. Math. 74 (2008), 477-491. Zbl 1199.03059, MR 2487926
Reference: [10] Köhler, P.: Brouwerian semilattices.Trans. AMS 268 (1981), 103-126. Zbl 0473.06003, MR 0628448, 10.2307/1998339
Reference: [11] Larmerová, J., Rachůnek, J.: Translations of distributive and modular ordered sets.Acta Univ. Palacki. Olomuc., Fac. Rerum Nat., Math. 27 (1988), 13-23. Zbl 0693.06003, MR 1039879
Reference: [12] Nemitz, W. C.: Implicative semi-lattices.Trans. AMS 117 (1965), 128-142. Zbl 0674.06003, MR 0176944, 10.2307/1994200
Reference: [13] Venkatanarasimhan, P. V.: Pseudo-complements in posets.Proc. AMS 28 (1971), 9-17. Zbl 0218.06002, MR 0272687, 10.2307/2037746
.

Files

Files Size Format View
MathBohem_143-2018-1_6.pdf 253.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo