Previous |  Up |  Next

Article

Title: Generalized public transportation scheduling using max-plus algebra (English)
Author: Subiono
Author: Kistosil, Fahim
Author: Adzkiya, Dieky
Language: English
Journal: Kybernetika
ISSN: 0023-5954 (print)
ISSN: 1805-949X (online)
Volume: 54
Issue: 2
Year: 2018
Pages: 243-267
Summary lang: English
.
Category: math
.
Summary: In this paper, we discuss the scheduling of a wide class of transportation systems. In particular, we derive an algorithm to generate a regular schedule by using max-plus algebra. Inputs of this algorithm are a graph representing the road network of public transportation systems and the number of public vehicles in each route. The graph has to be strongly connected, which means there is a path from any vertex to every vertex. Let us remark that the algorithm is general in the sense that we can allocate any number of vehicles in each route. The algorithm itself consists of two main steps. In the first step, we use a novel procedure to construct the model. Then in the second step, we compute a regular schedule by using the power algorithm. We describe our proposed framework for an example. (English)
Keyword: max-plus algebra
Keyword: strongly connected road network
Keyword: scheduling
MSC: 15A15
MSC: 15F10
idZBL: Zbl 06890418
idMR: MR3807713
DOI: 10.14736/kyb-2018-2-0243
.
Date available: 2018-05-30T15:59:46Z
Last updated: 2020-01-05
Stable URL: http://hdl.handle.net/10338.dmlcz/147192
.
Reference: [1] Arnold, P., Peeters, D., Thomas, I.: Modelling a rail/road intermodal transportation system..Transport. Res. Part E: Logist. Transport. Rev. 40 (2004), 255-270. MR 1031470, 10.1016/j.tre.2003.08.005
Reference: [2] Baccelli, F., Cohen, G., Olsder, G. J., Quadrat, J.-P.: Synchronization and Linearity, an Algebra for Discrete Event Systems..John Wiley and Sons, 1992. MR 1204266
Reference: [3] Braker, J. G.: Algorithms and Applications in Timed Discrete Event Systems..PhD Thesis, Delft University of Technology, 1993. MR 2714745
Reference: [4] Castelli, L., Pesenti, R., Ukovich, W.: Scheduling multimodal transportation systems..Europ. J. Oper. Res. 155 (2004), 603-615. MR 2054682, 10.1016/j.ejor.2003.02.002
Reference: [5] Chen, B., Cheng, H. H.: A review of the applications of agent technology in traffic and transportation systems..IEEE Trans. Intell. Transport. Systems 11 (2010), 485-497. 10.1109/tits.2010.2048313
Reference: [6] Cochet-Terrasson, J., Cohen, G., Gaubert, S., McGettrick, M., Quadrat, J.-P.: Numerical computation of spectral elements in max-plus algebra..In: Proc. IFAC Conference on System Structure and Control, 1998, pp. 699-706. 10.1016/s1474-6670(17)42067-2
Reference: [7] Crainic, T. G., Rousseau, J.-M.: Multicommodity, multimode freight transportation: A general modeling and algorithmic framework for the service network design problem..Transport. Res. Part B: Methodological 20 (1986), 225-242. 10.1016/0191-2615(86)90019-6
Reference: [8] Febbraro, A. Di, Sacone, S.: Hybrid modelling of transportation systems by means of Petri nets..In: Proc. IEEE International Conference on Systems, Man, and Cybernetics, 1998, pp. 131-135. 10.1109/icsmc.1998.725397
Reference: [9] Febbraro, A. Di, Sacco, N.: On modelling urban transportation networks via hybrid Petri nets..Control Engrg. Practice 12 (2004), 1225-1239. 10.1016/j.conengprac.2004.04.008
Reference: [10] Etschmaier, M. M.: Fuzzy controls for maintenance scheduling in transportation systems..Automatica 16 (1980), 255-264. 10.1016/0005-1098(80)90035-7
Reference: [11] Fahim, K., Hanafi, L., Ayu, F.: Monorail and tram scheduling which integrated Surabaya using max-plus algebra..In: International Seminar on Innovation in Mathematics and Mathematics Education, 2014.
Reference: [12] Fahim, K., Subiono, Woude, J. W. van der: On a generalization of power algorithms over max-plus algebra..Discrete Event Dynamic Systems 27 (2017), 181-203. MR 3600889, 10.1007/s10626-016-0235-4
Reference: [13] Goverde, R. M. P.: Punctuality of Railway Operations and Timetable Stability Analysis..PhD Thesis, Delft University of Technology, 2005.
Reference: [14] Gursoy, B. B., Mason, O.: Spectral properties of matrix polynomials in the max algebra..Linear Algebra Appl. 435 (2011), 1626-1636. MR 2810660, 10.1016/j.laa.2010.01.014
Reference: [15] Heidergott, B., Olsder, G. J., Woude, J.W. van der: Max Plus at Work-Modeling and Analysis of Synchronized Systems: A Course on Max-Plus Algebra and Its Applications..Princeton University Press, 2006. MR 2188299, 10.1515/9781400865239
Reference: [16] Herrero-Perez, D., Martinez-Barbera, H.: Modeling distributed transportation systems composed of flexible automated guided vehicles in flexible manufacturing systems..IEEE Trans. Industrial Informatics 6 (2010), 166-180. 10.1109/tii.2009.2038691
Reference: [17] James, S. J., James, C., Evans, J. A.: Modelling of food transportation systems - a review..Int. J. Refrigeration 29 (2006), 947-957. 10.1016/j.ijrefrig.2006.03.017
Reference: [18] Levin, A.: Scheduling and fleet routing models for transportation systems..Transport. Sci. 5 (1971), 232-255. MR 0293994, 10.1287/trsc.5.3.232
Reference: [19] Koelemeijer, G. Soto y: On the Behaviour of Classes of Min-max-plus Systems..PhD Thesis, Delft University of Technology, 2003.
Reference: [20] Stein, D. M.: Scheduling dial-a-ride transportation systems..Transport. Sci. 12 (1978), 232-249. 10.1287/trsc.12.3.232
Reference: [21] Subiono, Woude, J.W. van der: Power algorithms for (max,+)- and bipartite (min,max,+)-systems..Discrete Event Dynamic Systems 10 (2000), 369-389. MR 1791847, 10.1023/a:1008315821604
Reference: [22] Subiono: On Classes of Min-max-plus Systems and their Applications..PhD Thesis, Delft University of Technology, 2000. MR 1897646
Reference: [23] Subiono, Fahim, K.: On computing supply chain scheduling using max-plus algebra..Appl. Math. Sci. 10 (2016), 477-486. 10.12988/ams.2016.618
.

Files

Files Size Format View
Kybernetika_54-2018-2_2.pdf 679.5Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo