[1] Atkinson, K. E.: 
An Introduction to Numerical Analysis. Second edition. John Wiley and Sons, Inc., New York 1989. 
MR 1007135 
[2] Baglama, J., Calvetti, D., Reichel, L.: 
Iterative methods for the computation of a few eigenvalues of a large symmetric matrix. BIT 36 (1996), 3, 400-421. 
DOI 10.1007/bf01731924 | 
MR 1410088 
[3] Baglama, J., Calvetti, D., Reichel, L.: 
Fast Leja points. ETNA, Electron. Trans. Numer. Anal. 7 (1998), 124-140. 
MR 1667643 
[6] Boor, C. de: 
A Practical Guide to Splines. Revised edition. Springer-Verlag, Inc., New York 2001. 
MR 1900298 
[8] Gautschi, W.: 
Numerical Analysis. An Introduction. Birkhäuser, Boston 1997. 
MR 1454125 
[9] Higham, N. J.: 
Stability analysis of algorithms for solving confluent Vandermonde-like systems. SIAM J. Matrix Anal. Appl. 11 (1990), 1, 23-41. 
DOI 10.1137/0611002 | 
MR 1032215 
[10] Horner, W. G.: 
A new method of solving numerical equations of all orders, by continuous approximation. In: Philosophical Transactions of the Royal Society of London, 1819, pp. 308-335. 
DOI 10.1098/rstl.1819.0023 
[11] Natanson, I. P.: 
Konstruktive Funktionentheorie. Mathematische Lehrbücher und Monographien. I. Abteilung, Bd. VII., Akademie-Verlag. XIV, 515 S., 2. Abb. (1955), Berlin 1955. 
MR 0640867 
[13] Runge, C.: Über empirische Funktionen und die Interpolation zwischen äquidistanten Ordinaten. Schlömilch Z. 46 (1901), 224-243.
[14] Tal-Ezer, H.: 
High degree polynomial interpolation in Newton form. SIAM J. Sci. Stat. Comput. 12 (1991), 3, 648-667. 
DOI 10.1137/0912034 | 
MR 1093210 
[15] Trefethen, L. N.: 
Approximation Theory and Approximation Practice. PA: Society for Industrial and Applied Mathematics (SIAM), Philadelphia 2013. 
MR 3012510 | 
Zbl 1264.41001