Previous |  Up |  Next

Article

Title: Invariant symbolic calculus for semidirect products (English)
Author: Cahen, Benjamin
Language: English
Journal: Commentationes Mathematicae Universitatis Carolinae
ISSN: 0010-2628 (print)
ISSN: 1213-7243 (online)
Volume: 59
Issue: 2
Year: 2018
Pages: 253-269
Summary lang: English
.
Category: math
.
Summary: Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi$ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi$, under some technical hypothesis. We give some examples including the Poincaré group. (English)
Keyword: semidirect products
Keyword: invariant symbolic calculus
Keyword: coadjoint orbit
Keyword: unitary representation
Keyword: Berezin quantization
Keyword: Weyl quantization
Keyword: Poincaré group
MSC: 22D30
MSC: 22E45
MSC: 22E46
MSC: 81R05
MSC: 81S10
idZBL: Zbl 06940868
idMR: MR3815690
DOI: 10.14712/1213-7243.2015.244
.
Date available: 2018-06-28T08:49:52Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147252
.
Reference: [1] Ali S. T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376
Reference: [2] Arazy J., Upmeier H.: Weyl calculus for complex and real symmetric domains.Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl 1150.43302, MR 1984098
Reference: [3] Arazy J., Upmeier H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211. MR 1943284
Reference: [4] Arnal D., Cahen M., Gutt S.: Representation of compact Lie groups and quantization by deformation.Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR 1027456
Reference: [5] Arratia O., Martín M. A., del Olmo M. A.: Deformation on phase space.RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81. MR 1915672
Reference: [6] Berezin F. A.: Quantization.Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). Zbl 0976.83531, MR 0395610
Reference: [7] Berezin F. A.: Quantization in complex symmetric spaces.Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR 0508179
Reference: [8] Brif C., Mann A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries.Phys. Rev. A (3) 59 (1999), no. 2, 971–987. MR 1679730, 10.1103/PhysRevA.59.971
Reference: [9] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé.C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary). Zbl 0883.22016, MR 1483721
Reference: [10] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), no. 2, 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005
Reference: [11] Cahen B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), no. 1, 66–84. MR 2549798, 10.7146/math.scand.a-15106
Reference: [12] Cahen B.: Berezin quantization and holomorphic representations.Rend. Semin. Mat. Univ. Padova 129 (2013), 277–297. MR 3090642, 10.4171/RSMUP/129-16
Reference: [13] Cahen B.: Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48. MR 3202747
Reference: [14] Cahen B.: Stratonovich-Weyl correspondence for the real diamond group.Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213. MR 3137538
Reference: [15] Cahen B.: Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group.Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93. MR 3593544, 10.4171/RSMUP/136-7
Reference: [16] Cariñena J. F., Gracia-Bondía J. M., Várilly J. C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), no. 6, 901–933. MR 1048769, 10.1088/0305-4470/23/6/015
Reference: [17] Folland B.: Harmonic Analysis in Phase Space.Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989. Zbl 0682.43001, MR 0983366
Reference: [18] Gracia-Bondía J. M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114. MR 1187280
Reference: [19] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001. Zbl 0993.53002, MR 1834454, 10.1090/gsm/034
Reference: [20] Hörmander L.: The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators.Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985. MR 0781536
Reference: [21] Kirillov A. A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004. MR 2069175, 10.1090/gsm/064
Reference: [22] Kostant B.: Quantization and unitary representations. I. Prequantization.Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568
Reference: [23] Landsman N. P.: Mathematical Topics Between Classical and Quantum Mechanics.Springer Monographs in Mathematics, Springer, New York, 1998. MR 1662141
Reference: [24] Rawnsley J. H.: Representations of a semi-direct product by quantization.Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. MR 0387499, 10.1017/S0305004100051793
Reference: [25] Rawnsley J., Cahen M., Gutt S.: Quantization on Kähler manifolds. I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y
Reference: [26] Simms D. J.: Lie Groups and Quantum Mechanics.Lecture Notes in Mathematics, 52, Springer, Berlin, 1968. Zbl 0161.24002, MR 0232579, 10.1007/BFb0069914
Reference: [27] Stratonovich R. L.: On distributions in representation space.Soviet Physics. JETP 4 (1957), 891–898. Zbl 0082.19302, MR 0088173
Reference: [28] Taylor M. E.: Noncommutative Harmonic Analysis.Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986. MR 0852988
Reference: [29] Unterberger A., Unterberger J.: La série discrète de $SL(2, {\mathbb R})$ et les opérateurs pseudo- différentiels sur une demi-droite.Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French). MR 0744069, 10.24033/asens.1467
Reference: [30] Várilly J. C., Gracia-Bondía J. M.: The Moyal representation for spin.Ann. Physics 190 (1989), no. 1, 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5
Reference: [31] Voros A.: An algebra of pseudodifferential operators and the asymptotics of quantum mechanics.J. Funct. Anal. 29 (1978), no. 1, 104–132. MR 0496088, 10.1016/0022-1236(78)90049-6
Reference: [32] Wallach N. R.: Harmonic Analysis on Homogeneous Spaces.Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973. Zbl 0265.22022, MR 0498996
Reference: [33] Wildberger N. J.: On the Fourier transform of a compact semi simple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64–116. MR 1250994, 10.1017/S1446788700034741
.

Files

Files Size Format View
CommentatMathUnivCarolRetro_59-2018-2_10.pdf 331.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo