Title:
|
Invariant symbolic calculus for semidirect products (English) |
Author:
|
Cahen, Benjamin |
Language:
|
English |
Journal:
|
Commentationes Mathematicae Universitatis Carolinae |
ISSN:
|
0010-2628 (print) |
ISSN:
|
1213-7243 (online) |
Volume:
|
59 |
Issue:
|
2 |
Year:
|
2018 |
Pages:
|
253-269 |
Summary lang:
|
English |
. |
Category:
|
math |
. |
Summary:
|
Let $G$ be the semidirect product $V\rtimes \,K$ where $K$ is a connected semisimple non-compact Lie group acting linearly on a finite-dimensional real vector space $V$. Let $\pi$ be a unitary irreducible representation of $G$ which is associated by the Kirillov-Kostant method of orbits with a coadjoint orbit of $G$ whose little group is a maximal compact subgroup of $K$. We construct an invariant symbolic calculus for $\pi$, under some technical hypothesis. We give some examples including the Poincaré group. (English) |
Keyword:
|
semidirect products |
Keyword:
|
invariant symbolic calculus |
Keyword:
|
coadjoint orbit |
Keyword:
|
unitary representation |
Keyword:
|
Berezin quantization |
Keyword:
|
Weyl quantization |
Keyword:
|
Poincaré group |
MSC:
|
22D30 |
MSC:
|
22E45 |
MSC:
|
22E46 |
MSC:
|
81R05 |
MSC:
|
81S10 |
idZBL:
|
Zbl 06940868 |
idMR:
|
MR3815690 |
DOI:
|
10.14712/1213-7243.2015.244 |
. |
Date available:
|
2018-06-28T08:49:52Z |
Last updated:
|
2020-07-06 |
Stable URL:
|
http://hdl.handle.net/10338.dmlcz/147252 |
. |
Reference:
|
[1] Ali S. T., Engliš M.: Quantization methods: a guide for physicists and analysts.Rev. Math. Phys. 17 (2005), no. 4, 391–490. MR 2151954, 10.1142/S0129055X05002376 |
Reference:
|
[2] Arazy J., Upmeier H.: Weyl calculus for complex and real symmetric domains.Harmonic Analysis on Complex Homogeneous Domains and Lie Groups (Rome, 2001). Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Natur. Rend. Lincei (9) Mat. Appl. 13 (2002), no. 3–4, 165–181. Zbl 1150.43302, MR 1984098 |
Reference:
|
[3] Arazy J., Upmeier H.: Invariant symbolic calculi and eigenvalues of invariant operators on symmeric domains.Function Spaces, Interpolation Theory and Related Topics (Lund, 2000), De Gruyter, Berlin, 2002, pp. 151–211. MR 1943284 |
Reference:
|
[4] Arnal D., Cahen M., Gutt S.: Representation of compact Lie groups and quantization by deformation.Acad. Roy. Belg. Bull. Cl. Sci. (5) 74 (1988), no. 4–5, 123–141. MR 1027456 |
Reference:
|
[5] Arratia O., Martín M. A., del Olmo M. A.: Deformation on phase space.RACSAM. Rev. R. Acad. Cienc. Exactas Fís. Nat., Ser. A Mat. 96 (2002), no. 1, 63–81. MR 1915672 |
Reference:
|
[6] Berezin F. A.: Quantization.Izv. Akad. Nauk SSSR Ser. Mat. 38 (1974), 1116–1175 (Russian). Zbl 0976.83531, MR 0395610 |
Reference:
|
[7] Berezin F. A.: Quantization in complex symmetric spaces.Izv. Akad. Nauk SSSR Ser. Mat. 39 (1975), no. 2, 363–402, 472 (Russian). MR 0508179 |
Reference:
|
[8] Brif C., Mann A.: Phase-space formulation of quantum mechanics and quantum-state reconstruction for physical systems with Lie-group symmetries.Phys. Rev. A (3) 59 (1999), no. 2, 971–987. MR 1679730, 10.1103/PhysRevA.59.971 |
Reference:
|
[9] Cahen B.: Quantification d'une orbite massive d'un groupe de Poincaré généralisé.C. R. Acad. Sci. Paris Sér. I Math. 325 (1997), no. 7, 803–806 (French. English. French summary). Zbl 0883.22016, MR 1483721 |
Reference:
|
[10] Cahen B.: Weyl quantization for semidirect products.Differential Geom. Appl. 25 (2007), no. 2, 177–190. Zbl 1117.81087, MR 2311733, 10.1016/j.difgeo.2006.08.005 |
Reference:
|
[11] Cahen B.: Berezin quantization on generalized flag manifolds.Math. Scand. 105 (2009), no. 1, 66–84. MR 2549798, 10.7146/math.scand.a-15106 |
Reference:
|
[12] Cahen B.: Berezin quantization and holomorphic representations.Rend. Semin. Mat. Univ. Padova 129 (2013), 277–297. MR 3090642, 10.4171/RSMUP/129-16 |
Reference:
|
[13] Cahen B.: Global parametrization of scalar holomorphic coadjoint orbits of a quasi-Hermitian Lie group.Acta Univ. Palack. Olomuc. Fac. Rerum Natur. Math. 52 (2013), 35–48. MR 3202747 |
Reference:
|
[14] Cahen B.: Stratonovich-Weyl correspondence for the real diamond group.Riv. Mat. Univ. Parma (N.S.) 4 (2013), no. 1, 197–213. MR 3137538 |
Reference:
|
[15] Cahen B.: Berezin transform and Stratonovich-Weyl correspondence for the multi-dimensional Jacobi group.Rend. Semin. Mat. Univ. Padova 136 (2016), 69–93. MR 3593544, 10.4171/RSMUP/136-7 |
Reference:
|
[16] Cariñena J. F., Gracia-Bondía J. M., Várilly J. C.: Relativistic quantum kinematics in the Moyal representation.J. Phys. A 23 (1990), no. 6, 901–933. MR 1048769, 10.1088/0305-4470/23/6/015 |
Reference:
|
[17] Folland B.: Harmonic Analysis in Phase Space.Annals of Mathematics Studies, 122, Princeton University Press, Princeton, 1989. Zbl 0682.43001, MR 0983366 |
Reference:
|
[18] Gracia-Bondía J. M.: Generalized Moyal quantization on homogeneous symplectic spaces.Deformation Theory and Quantum Groups with Applications to Mathematical Physics (Amherst, MA, 1990), Contemp. Math., 134, Amer. Math. Soc., Providence, 1992, pp. 93–114. MR 1187280 |
Reference:
|
[19] Helgason S.: Differential Geometry, Lie Groups and Symmetric Spaces.Graduate Studies in Mathematics, 34, American Mathematical Society, Providence, 2001. Zbl 0993.53002, MR 1834454, 10.1090/gsm/034 |
Reference:
|
[20] Hörmander L.: The Analysis of Linear Partial Differential Operators. III. Pseudodifferential Operators.Grundlehren der Mathematischen Wissenschaften, 274, Springer, Berlin, 1985. MR 0781536 |
Reference:
|
[21] Kirillov A. A.: Lectures on the Orbit Method.Graduate Studies in Mathematics, 64, American Mathematical Society, Providence, 2004. MR 2069175, 10.1090/gsm/064 |
Reference:
|
[22] Kostant B.: Quantization and unitary representations. I. Prequantization.Lectures in Modern Analysis and Applications, III, Lecture Notes in Math., 170, Springer, Berlin, 1970, pp. 87–208. MR 0294568 |
Reference:
|
[23] Landsman N. P.: Mathematical Topics Between Classical and Quantum Mechanics.Springer Monographs in Mathematics, Springer, New York, 1998. MR 1662141 |
Reference:
|
[24] Rawnsley J. H.: Representations of a semi-direct product by quantization.Math. Proc. Cambridge Philos. Soc. 78 (1975), no. 2, 345–350. MR 0387499, 10.1017/S0305004100051793 |
Reference:
|
[25] Rawnsley J., Cahen M., Gutt S.: Quantization on Kähler manifolds. I. Geometric interpretation of Berezin quantization.J. Geom. Phys. 7 (1990), 45–62. MR 1094730, 10.1016/0393-0440(90)90019-Y |
Reference:
|
[26] Simms D. J.: Lie Groups and Quantum Mechanics.Lecture Notes in Mathematics, 52, Springer, Berlin, 1968. Zbl 0161.24002, MR 0232579, 10.1007/BFb0069914 |
Reference:
|
[27] Stratonovich R. L.: On distributions in representation space.Soviet Physics. JETP 4 (1957), 891–898. Zbl 0082.19302, MR 0088173 |
Reference:
|
[28] Taylor M. E.: Noncommutative Harmonic Analysis.Mathematical Surveys and Monographs, 22, American Mathematical Society, Providence, 1986. MR 0852988 |
Reference:
|
[29] Unterberger A., Unterberger J.: La série discrète de $SL(2, {\mathbb R})$ et les opérateurs pseudo- différentiels sur une demi-droite.Ann. Sci. École Norm. Sup. (4) 17 (1984), no. 1, 83–116 (French). MR 0744069, 10.24033/asens.1467 |
Reference:
|
[30] Várilly J. C., Gracia-Bondía J. M.: The Moyal representation for spin.Ann. Physics 190 (1989), no. 1, 107–148. MR 0994048, 10.1016/0003-4916(89)90262-5 |
Reference:
|
[31] Voros A.: An algebra of pseudodifferential operators and the asymptotics of quantum mechanics.J. Funct. Anal. 29 (1978), no. 1, 104–132. MR 0496088, 10.1016/0022-1236(78)90049-6 |
Reference:
|
[32] Wallach N. R.: Harmonic Analysis on Homogeneous Spaces.Pure and Applied Mathematics, 19, Marcel Dekker, New York, 1973. Zbl 0265.22022, MR 0498996 |
Reference:
|
[33] Wildberger N. J.: On the Fourier transform of a compact semi simple Lie group.J. Austral. Math. Soc. Ser. A 56 (1994), no. 1, 64–116. MR 1250994, 10.1017/S1446788700034741 |
. |