Previous |  Up |  Next

Article

Title: Computing discrete convolutions with verified accuracy via Banach algebras and the FFT (English)
Author: Lessard, Jean-Philippe
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 219-235
Summary lang: English
.
Category: math
.
Summary: We introduce a method to compute rigorous component-wise enclosures of discrete convolutions using the fast Fourier transform, the properties of Banach algebras, and interval arithmetic. The purpose of this new approach is to improve the implementation and the applicability of computer-assisted proofs performed in weighed $\ell ^1$ Banach algebras of Fourier/Chebyshev sequences, whose norms are known to be numerically unstable. We introduce some application examples, in particular a rigorous aposteriori error analysis for a steady state in the quintic Swift-Hohenberg PDE. (English)
Keyword: discrete convolutions
Keyword: Banach algebras
Keyword: fast Fourier transform
Keyword: interval arithmetic
Keyword: rigorously verified numerics
Keyword: quintic Swift-Hohenberg PDE
MSC: 42B05
MSC: 46B45
MSC: 46J15
MSC: 65G40
MSC: 65R10
MSC: 65T50
idZBL: Zbl 06945730
idMR: MR3833658
DOI: 10.21136/AM.2018.0082-18
.
Date available: 2018-07-16T08:46:53Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147308
.
Reference: [1] Boyd, J. P.: Chebyshev and Fourier Spectral Methods.Dover Publications, Mineola (2001). Zbl 0994.65128, MR 1874071
Reference: [2] Brigham, E.: Fast Fourier Transform and Its Applications.Prentice Hall, Upper Saddle River (1988).
Reference: [3] Cyranka, J.: Efficient and generic algorithm for rigorous integration forward in time of dPDEs. I.J. Sci. Comput. 59 (2014), 28-52. Zbl 1296.65138, MR 3167726, 10.1007/s10915-013-9749-1
Reference: [4] Day, S., Hiraoka, Y., Mischaikow, K., Ogawa, T.: Rigorous numerics for global dynamics: a study of the Swift-Hohenberg equation.SIAM J. Appl. Dyn. Syst. 4 (2005), 1-31. Zbl 1058.35050, MR 2136516, 10.1137/040604479
Reference: [5] Day, S., Junge, O., Mischaikow, K.: A rigorous numerical method for the global analysis of infinite-dimensional discrete dynamical systems.SIAM J. Appl. Dyn. Syst. 3 (2004), 117-160. Zbl 1059.37068, MR 2067140, 10.1137/030600210
Reference: [6] Day, S., Kalies, W. D.: Rigorous computation of the global dynamics of integrodifference equations with smooth nonlinearities.SIAM J. Numer. Anal. 51 (2013), 2957-2983. Zbl 1288.37030, MR 3124898, 10.1137/120903129
Reference: [7] Day, S., Lessard, J.-P., Mischaikow, K.: Validated continuation for equilibria of PDEs.SIAM J. Numer. Anal. 45 (2007), 1398-1424. Zbl 1151.65074, MR 2338393, 10.1137/050645968
Reference: [8] Figueras, J.-L., Llave, R. de la: Numerical computations and computer assisted proofs of periodic orbits of the Kuramoto-Sivashinsky equation.SIAM J. Appl. Dyn. Syst. 16 (2017), 834-852. Zbl 1370.65047, MR 3633778, 10.1137/16M1073790
Reference: [9] Figueras, J.-L., Haro, A., Luque, A.: Rigorous computer-assisted application of KAM theory: a modern approach.Found. Comput. Math. 17 (2017), 1123-1193. Zbl 06814851, MR 3709329, 10.1007/s10208-016-9339-3
Reference: [10] Gameiro, M., Lessard, J.-P.: Analytic estimates and rigorous continuation for equilibria of higher-dimensional PDEs.J. Differ. Equations 249 (2010), 2237-2268. Zbl 1256.35196, MR 2718657, 10.1016/j.jde.2010.07.002
Reference: [11] Gameiro, M., Lessard, J.-P., Mischaikow, K.: Validated continuation over large parameter ranges for equilibria of PDEs.Math. Comput. Simul. 79 (2008), 1368-1382. Zbl 1166.65379, MR 2487806, 10.1016/j.matcom.2008.03.014
Reference: [12] Gameiro, M., Lessard, J.-P., Ricaud, Y.: Rigorous numerics for piecewise-smooth systems: a functional analytic approach based on Chebyshev series.J. Comput. Appl. Math. 292 (2016), 654-673. Zbl 1323.65123, MR 3392421, 10.1016/j.cam.2015.05.016
Reference: [13] Hiraoka, Y., Ogawa, T.: Rigorous numerics for localized patterns to the quintic Swift-Hohenberg equation.Japan J. Ind. Appl. Math. 22 (2005), 57-75. Zbl 1067.65146, MR 2126387, 10.1007/BF03167476
Reference: [14] Hiraoka, Y., Ogawa, T.: An efficient estimate based on FFT in topological verification method.J. Comput. Appl. Math. 199 (2007), 238-244. Zbl 1109.65110, MR 2269503, 10.1016/j.cam.2005.08.036
Reference: [15] Hungria, A., Lessard, J.-P., James, J. D. Mireles: Rigorous numerics for analytic solutions of differential equations: the radii polynomial approach.Math. Comput. 85 (2016), 1427-1459. Zbl 1332.65114, MR 3454370, 10.1090/mcom/3046
Reference: [16] Koch, H., Schenkel, A., Wittwer, P.: Computer-assisted proofs in analysis and programming in logic: A case study.SIAM Rev. 38 (1996), 565-604. Zbl 0865.68111, MR 1420838, 10.1137/S0036144595284180
Reference: [17] Lessard, J.-P., James, J. D. Mireles, Ransford, J.: Automatic differentiation for Fourier series and the radii polynomial approach.Physica D 334 (2016), 174-186. MR 3545977, 10.1016/j.physd.2016.02.007
Reference: [18] Lessard, J.-P., Reinhardt, C.: Rigorous numerics for nonlinear differential equations using Chebyshev series.SIAM J. Numer. Anal. 52 (2014), 1-22. Zbl 1290.65060, MR 3148084, 10.1137/13090883X
Reference: [19] James, J. D. Mireles, Mischaikow, K.: Computational proofs in dynamics.Encyclopedia of Applied and Computational Mathematics B. Engquist Springer, Berlin (2015). MR 3470172, 10.1007/978-3-540-70529-1_322
Reference: [20] Moore, R. E.: Interval Analysis.Prentice-Hall, Englewood Cliffs (1966). Zbl 0176.13301, MR 0231516
Reference: [21] Nakao, M. T.: Numerical verification methods for solutions of ordinary and partial differential equations.Numer. Funct. Anal. Optimization 22 (2001), 321-356. Zbl 1106.65315, MR 1849323, 10.1081/NFA-100105107
Reference: [22] Rump, S. M.: INTLAB - INTerval LABoratory.T. Csendes Developments in Reliable Computing Kluwer Academic Publishers, Dordrecht (1999), 77-104. Available at http://www.ti3.tu-harburg.de/rump/intlab/. Zbl 0949.65046
Reference: [23] Rump, S. M.: Verification methods: rigorous results using floating-point arithmetic.Acta Numerica 19 (2010), 287-449. Zbl 1323.65046, MR 2652784, 10.1017/S096249291000005X
Reference: [24] Sakaguchi, H., Brand, H. R.: Stable localized solutions of arbitrary length for the quintic Swift-Hohenberg equation.Physica D 97 (1996), 274-285. 10.1016/0167-2789(96)00077-2
Reference: [25] Tucker, W.: Validated Numerics. A Short Introduction to Rigorous Computations.Princeton University Press, Princeton (2011). Zbl 1231.65077, MR 2807595
Reference: [26] Berg, J. B. van den, Groothedde, C. M., Lessard, J.-P.: A general method for computer-assisted proofs of periodic solutions in delay differential problems.Preprint (2018). MR 3896998
Reference: [27] Berg, J. B. van den, Lessard, J.-P.: Rigorous numerics in dynamics.Notices Am. Math. Soc. 62 (2015), 1057-1061. Zbl 1338.68301, MR 3444942, 10.1090/noti1276
Reference: [28] Berg, J. B. van den, Williams, J. F.: Validation of the bifurcation diagram in the 2D Ohta-Kawasaki problem.Nonlinearity 30 (2017), 1584-1638. Zbl 1366.65068, MR 3636312, 10.1088/1361-6544/aa60e8
Reference: [29] Loan, C. F. Van: Computational Frameworks for the Fast Fourier Transform.Frontiers in Applied Mathematics 10, SIAM, Philadelphia (1992). Zbl 0757.65154, MR 1153025, 10.1137/1.9781611970999
Reference: [30] Wilczak, D., Zgliczynski, P.: Heteroclinic connections between periodic orbits in planar restricted circular three-body problem---a computer-assisted proof.Commun. Math. Phys. 234 (2003), 37-75. Zbl 1055.70005, MR 1961956, 10.1007/s00220-002-0709-0
Reference: [31] Zgliczyński, P.: Rigorous numerics for dissipative PDEs. III: An effective algorithm for rigorous integration of dissipative PDEs.Topol. Methods Nonlinear Anal. 36 (2010), 197-262. Zbl 1230.65113, MR 2788972
Reference: [32] Zgliczyński, P., Mischaikow, K.: Rigorous numerics for partial differential equations: The Kuramoto-Sivashinsky equation.Found. Comput. Math. 1 (2001), 255-288. Zbl 0984.65101, MR 1838755, 10.1007/s102080010010
.

Files

Files Size Format View
AplMat_63-2018-3_2.pdf 457.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo