Previous |  Up |  Next

Article

Title: Reliable numerical modelling of malaria propagation (English)
Author: Faragó, István
Author: Mincsovics, Miklós Emil
Author: Mosleh, Rahele
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 3
Year: 2018
Pages: 259-271
Summary lang: English
.
Category: math
.
Summary: We investigate biological processes, particularly the propagation of malaria. Both the continuous and the numerical models on some fixed mesh should preserve the basic qualitative properties of the original phenomenon. Our main goal is to give the conditions for the discrete (numerical) models of the malaria phenomena under which they possess some given qualitative property, namely, to be between zero and one. The conditions which guarantee this requirement are related to the time-discretization step-size. We give a sufficient condition for some explicit methods. For implicit methods we prove that the above property holds unconditionally. (English)
Keyword: epidemic model
Keyword: qualitative propertie
Keyword: non-negativity
Keyword: finite difference method
MSC: 34C60
MSC: 35Q92
MSC: 65L06
MSC: 65M06
MSC: 92D30
idZBL: Zbl 06945732
idMR: MR3833660
DOI: 10.21136/AM.2018.0098-18
.
Date available: 2018-07-16T08:48:07Z
Last updated: 2020-07-06
Stable URL: http://hdl.handle.net/10338.dmlcz/147310
.
Reference: [1] Bellen, A., Zennaro, M.: Numerical Methods for Delay Differential Equations.Numerical Mathematics and Scientific Computation, Oxford University Press, Oxford (2003). Zbl 1038.65058, MR 1997488, 10.1093/acprof:oso/9780198506546.001.0001
Reference: [2] Capasso, V.: Mathematical Structures of Epidemic Systems.Lecture Notes in Biomathematics 97, Springer, Berlin (2008). Zbl 1141.92035, MR 2722340, 10.1007/978-3-540-70514-7
Reference: [3] ECDC: Communicable Disease Threats Report Week 46, 12-18 November 2017.Available at: https://ecdc.europa.eu/en/publications-data/communicable-disease-threats-report-12-18-november-2017-week-46.
Reference: [4] Faragó, I., Horváth, R.: Discrete maximum principle and adequate discretizations of linear parabolic problems.SIAM J. Sci. Comput. 28 (2006), 2313-2336. Zbl 1130.65086, MR 2272263, 10.1137/050627241
Reference: [5] Faragó, I., Horváth, R.: Continuous and discrete parabolic operators and their qualitative properties.IMA J. Numer. Anal. 29 (2009), 606-631. Zbl 1176.65087, MR 2520161, 10.1093/imanum/drn032
Reference: [6] Hethcote, H. W., Stech, H. W., Driessche, P. van den: Periodicity and stability in epidemic models: a survey.Differential Equations and Applications in Ecology, Epidemics, and Population Problems S. Busenberg, K. L. Cooke Academic Press, New York (1981), 65-82. Zbl 0477.92014, MR 0645190
Reference: [7] Kermack, W. O., McKendrick, A. G.: A contribution to the mathematical theory of epidemics.Proc. R. Soc. Lond., Ser. A 115 (1927), 700-721. Zbl 53.0517.01, 10.1098/rspa.1927.0118
Reference: [8] Mandal, S., Sarkar, R. R., Sinha, S.: Mathematical models of malaria---a review.Malaria Journal 10 (2011). MR 2756727, 10.1186/1475-2875-10-202
Reference: [9] Ross, R.: The Prevention of Malaria.John Murray, London (1911).
Reference: [10] Ruan, S., Xiao, D., Beier, J. C.: On the delayed Ross-Macdonald model for malaria transmission.Bull. Math. Biol. 70 (2008), 1098-1114. Zbl 1142.92040, MR 2391181, 10.1007/s11538-007-9292-z
Reference: [11] Smith, H.: An Introduction to Delay Differential Equations with Applications to the Life Sciences.Texts in Applied Mathematics 57, Springer, New York (2011). Zbl 1227.34001, MR 2724792, 10.1007/978-1-4419-7646-8
Reference: [12] WHO.malaria: Available at: http://www.who.int/en/news-room/fact-sheets/de-tail/malaria..
.

Files

Files Size Format View
AplMat_63-2018-3_4.pdf 326.7Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo