[2] Faustmann, M., Melenk, J. M.: 
Robust exponential convergence of $hp$-FEM in balanced norms for singularly perturbed reaction-diffusion problems: corner domains. Comput. Math. Appl. 74 (2017), 1576-1589. 
DOI 10.1016/j.camwa.2017.03.015 | 
MR 3706618[4] Franz, S., Roos, H.-G.: 
Robust error estimation in energy and balanced norms for singularly perturbed fourth order problems. Comput. Math. Appl. 72 (2016), 233-247. 
DOI 10.1016/j.camwa.2016.05.001 | 
MR 3506572[9] Oswald, P.: 
$L_\infty$-bounds for the $L_2$-projection onto linear spline spaces. Recent Advances in Harmonic Analysis and Applications D. Bilyk et al. Springer Proc. Math. Stat. 25, Springer, New York (2013), 303-316. 
DOI 10.1007/978-1-4614-4565-4_24 | 
MR 3066894 | 
Zbl 1273.65180[11] Roos, H.-G.: 
Error estimates in balanced norms of finite element methods on layer-adapted meshes for second order reaction-diffusion problems. Boundary and Interior Layers, Computational and Asymptotic Methods BAIL 2016 Z. Huang et al. Lecture Notes in Computational Science and Engineering 120, Springer, Cham (2017), 1-18. 
DOI 10.1007/978-3-319-67202-1_1 | 
MR 3772487[12] Roos, H.-G., Schopf, M.: 
Convergence and stability in balanced norms for finite element methods on Shishkin meshes for reaction-diffusion problems. ZAMM, Z. Angew. Math. Mech. 95 (2015), 551-565. 
DOI 10.1002/zamm.201300226 | 
MR 3358551 | 
Zbl 1326.65163[13] Roos, H.-G., Stynes, M., Tobiska, L.: 
Robust Numerical Methods for Singularly Perturbed Differential Equations. Convection-Diffusion-Reaction and Flow Problems. Springer Series in Computational Mathematics 24, Springer, Berlin (2008). 
DOI 10.1007/978-3-540-34467-4 | 
MR 2454024 | 
Zbl 1155.65087