Previous |  Up |  Next

Article

Title: A weak comparison principle for some quasilinear elliptic operators: it compares functions belonging to different spaces (English)
Author: Unai, Akihito
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 4
Year: 2018
Pages: 483-498
Summary lang: English
.
Category: math
.
Summary: We shall prove a weak comparison principle for quasilinear elliptic operators $-{\rm div}(a(x,\nabla u))$ that includes the negative $p$-Laplace operator, where $a\colon \Omega \times \Bbb R^N \rightarrow \Bbb R^N$ satisfies certain conditions frequently seen in the research of quasilinear elliptic operators. In our result, it is characteristic that functions which are compared belong to different spaces. (English)
Keyword: weak comparison principle
Keyword: quasilinear elliptic operator
Keyword: $p$-Laplace operator
MSC: 35B51
MSC: 35J25
MSC: 35J62
MSC: 35J92
idZBL: Zbl 06945743
idMR: MR3842964
DOI: 10.21136/AM.2018.0126-18
.
Date available: 2018-07-30T11:31:29Z
Last updated: 2020-09-03
Stable URL: http://hdl.handle.net/10338.dmlcz/147322
.
Reference: [1] Boccardo, L., Croce, G.: Elliptic Partial Differential Equations. Existence and Regularity of Distributional Solutions.De Gruyter Studies in Mathematics 55, De Gruyter, Berlin (2013). Zbl 1293.35001, MR 3154599, 10.1515/9783110315424
Reference: [2] Brezis, H.: Functional Analysis, Sobolev Spaces and Partial Differential Equations.Universitext, Springer, New York (2011). Zbl 1220.46002, MR 2759829, 10.1007/978-0-387-70914-7
Reference: [3] Chipot, M.: Elliptic Equations: An Introductory Course.Birkhäuser Advanced Texts. Basler Lehrbücher, Birkhäuser, Basel (2009). Zbl 1171.35003, MR 2494977, 10.1007/978-3-7643-9982-5
Reference: [4] Damascelli, L.: Comparison theorems for some quasilinear degenerate elliptic operators and applications to symmetry and monotonicity results.Ann. Inst. Henri Poincaré, Anal. Non Linéaire 15 (1998), 493-516. Zbl 0911.35009, MR 1632933, 10.1016/S0294-1449(98)80032-2
Reference: [5] D'Ambrosio, L., Farina, A., Mitidieri, E., Serrin, J.: Comparison principles, uniqueness and symmetry results of solutions of quasilinear elliptic equations and inequalities.Nonlinear Anal., Theory Methods Appl., Ser. A, Theory Methods 90 (2013), 135-158. Zbl 1287.35033, MR 3073634, 10.1016/j.na.2013.06.004
Reference: [6] D'Ambrosio, L., Mitidieri, E.: A priori estimates and reduction principles for quasilinear elliptic problems and applications.Adv. Differ. Equ. 17 (2012), 935-1000. Zbl 1273.35138, MR 2985680
Reference: [7] Mitrović, D., Žubrinić, D.: Fundamentals of Applied Functional Analysis. Distributions---Sobolev Spaces---Nonlinear Elliptic Equations.Pitman Monographs and Surveys in Pure and Applied Mathematics 91, Longman, Harlow (1998). Zbl 0901.46001, MR 1603811
Reference: [8] Motreanu, D., Motreanu, V. V., Papageorgiou, N.: Topological and Variational Methods with Applications to Nonlinear Boundary Value Problems.Springer, New York (2014). Zbl 1292.47001, MR 3136201, 10.1007/978-1-4614-9323-5
Reference: [9] Tolksdorf, P.: On the Dirichlet problem for quasilinear equations in domains with conical boundary points.Commun. Partial Differ. Equations 8 (1983), 773-817. Zbl 0515.35024, MR 0700735, 10.1080/03605308308820285
Reference: [10] Unai, A.: Sub- and super-solutions method for some quasilinear elliptic operators.Far East J. Math. Sci. (FJMS) 99 (2016), 851-867. Zbl 06627771, MR 3842964, 10.17654/MS099060851
.

Files

Files Size Format View
AplMat_63-2018-4_6.pdf 302.0Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo