Previous |  Up |  Next

Article

Title: Lotka-Volterra type predator-prey models: Comparison of hidden and explicit resources with a transmissible disease in the predator species (English)
Author: Assis, Luciana
Author: Banerjee, Malay
Author: Cecconello, Moiseis
Author: Venturino, Ezio
Language: English
Journal: Applications of Mathematics
ISSN: 0862-7940 (print)
ISSN: 1572-9109 (online)
Volume: 63
Issue: 5
Year: 2018
Pages: 569-600
Summary lang: English
.
Category: math
.
Summary: The paper deals with two mathematical models of predator-prey type where a transmissible disease spreads among the predator species only. The proposed models are analyzed and compared in order to assess the influence of hidden and explicit alternative resource for predator. The analysis shows boundedness as well as local stability and transcritical bifurcations for equilibria of systems. Numerical simulations support our theoretical analysis. (English)
Keyword: hidden prey
Keyword: explicit prey
Keyword: bifurcation
Keyword: predator-prey model
MSC: 34A34
MSC: 92D25
MSC: 92D40
idZBL: Zbl 06986926
idMR: MR3870149
DOI: 10.21136/AM.2018.0158-18
.
Date available: 2018-10-23T06:59:26Z
Last updated: 2020-11-02
Stable URL: http://hdl.handle.net/10338.dmlcz/147414
.
Reference: [1] Chakraborty, K., Das, S. S.: Biological conservation of a prey-predator system incorporating constant prey refuge through provision of alternative food to predators: A theoretical study.Acta Biotheoretica 62 (2014), 183-205. 10.1007/s10441-014-9217-9
Reference: [2] Clark, C. W.: Mathematical Bioeconomics: The Optimal Management of Renewable Resources.Wiley-Interscience Publication, John Wiley & Sons, New York (1990). Zbl 0712.90018, MR 1044994
Reference: [3] Assis, L. M. E. de, Banerjee, M., Venturino, E.: Comparing predator-prey models with hidden and explicit resources.Ann. Univ. Ferrara, Sez. VII, Sci. Mat. 64 (2018), 259-283. MR 3857003, 10.1007/s11565-018-0298-2
Reference: [4] Assis, L. M. E. de, Banerjee, M., Venturino, E.: Comparison of hidden and explicit resources in ecoepidemic models of predator-prey type.(to appear) in Comput. Appl. Math.
Reference: [5] Freedman, H. I.: Deterministic Mathematical Models in Population Ecology.Monographs and Textbooks in Pure and Applied Mathematics 57, Marcel Dekker, New York (1980). Zbl 0448.92023, MR 0586941, 10.2307/3556198
Reference: [6] Goel, N. S., Maitra, S. C., Montroll, E. W.: On the Volterra and other nonlinear models of interacting populations.Rev. Mod. Phys. 43 (1971), 231-276. MR 0484546, 10.1103/RevModPhys.43.231
Reference: [7] Haque, M., Li, B. L., Rahman, M. S., Venturino, E.: Effect of a functional response-dependent prey refuge in a predator-prey model.Ecological Complexity 20 (2014), 248-256. 10.1016/j.ecocom.2014.04.001
Reference: [8] Haque, M., Rahman, M. S., Venturino, E.: Comparing functional responses in predator-infected eco-epidemics models.BioSystems 114 (2013), 98-117. 10.1016/j.biosystems.2013.06.002
Reference: [9] Hixon, M. A.: Species diversity: Prey refuges modify the interactive effects of predation and competition.Theor. Popul. Biol. 39 (1991), 178-200. 10.1016/0040-5809(91)90035-E
Reference: [10] Lotka, A. J.: Contribution to the theory of periodic reactions.J. Phys. Chem. 14 (1910), 271-274. 10.1021/j150111a004
Reference: [11] Lotka, A. J.: Analytical note on certain rhythmic relations in organic systems.Proc. Natl. Acad. Sci. USA 6 (1920), 410-415. 10.1073/pnas.6.7.410
Reference: [12] Murray, J. D.: Mathematical Biology.Biomathematics 19, Springer, Berlin (1989). Zbl 0682.92001, MR 1007836, 10.1007/978-3-662-08539-4
Reference: [13] Perko, L.: Differential Equations and Dynamical Systems.Texts in Applied Mathematics 7, Springer, New York (2001). Zbl 0973.34001, MR 1801796, 10.1007/978-1-4613-0003-8
Reference: [14] Venturino, E.: The influence of diseases on Lotka-Volterra systems.Rocky Mt. J. Math. 24 (1994), 381-402. Zbl 0799.92017, MR 1270046, 10.1216/rmjm/1181072471
Reference: [15] Venturino, E.: Ecoepidemiology: a more comprehensive view of population interactions.Math. Model. Nat. Phenom. 11 (2016), 49-90. Zbl 1384.92060, MR 3452635, 10.1051/mmnp/201611104
Reference: [16] Volterra, V.: Variazioni e fluttuazioni del numero d'individui in specie animali conviventi.Memorie Acdad. d. L. Roma 2 (1927), 31-113 Italian \99999JFM99999 52.0450.06.
Reference: [17] Volterra, V.: Variations and fluctuations of the number of individuals in animal species living together.ICES Journal of Marine Science 3 (1928), 3-5. 10.1093/icesjms/3.1.3
.

Files

Files Size Format View
AplMat_63-2018-5_5.pdf 455.1Kb application/pdf View/Open
Back to standard record
Partner of
EuDML logo