Previous |  Up |  Next

Article

Keywords:
nonlinear optimal control; pseudospectral method; Hamilton–Jacobi–Bellman equation
Summary:
This paper presents a numerical approach to solve the Hamilton-Jacobi-Bellman (HJB) problem which appears in feedback solution of the optimal control problems. In this method, first, by using Chebyshev pseudospectral spatial discretization, the HJB problem is converted to a system of ordinary differential equations with terminal conditions. Second, the time-marching Runge-Kutta method is used to solve the corresponding system of differential equations. Then, an approximate solution for the HJB problem is computed. In addition, to get more efficient and accurate method, the domain decomposition strategy is proposed with the pseudospectral spatial discretization. Five numerical examples are presented to demonstrate the efficiency and accuracy of the proposed hybrid method.
References:
[1] Baltensperger, R., Trummer, M. R.: Spectral differencing with a twist. SIAM J. Sci. Comput. 24 (2003), 1465-1487. DOI 10.1137/s1064827501388182 | MR 1976305
[2] Beard, R., Saridis, G., Wen, J.: Galerkin approximations of the generalized Hamilton-Jacobi-Bellman equation. Automatica 33 (1997), 2159-2177. DOI 10.1016/s0005-1098(97)00128-3 | MR 1604089
[3] Ben-Asher, J. Z.: Optimal Control Theory with Aerospace Applications. American Institute of Aeronautics and Astronautics, Reston 2010. DOI 10.2514/4.867347
[4] Boyd, J. P.: Chebyshev and Fourier Spectral Methods. Second revised edition. Dover Publications, New York 2001. MR 1874071
[5] Boyd, J. P., Petschek, R.: The relationships between Chebyshev, Legendre and Jacobi polynomials: the generic superiority of Chebyshev polynomials and three important exceptions. J. Scientific Comput. 59 (2014), 1-27. DOI 10.1007/s10915-013-9751-7 | MR 3167725
[6] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods in Fluid Dynamics. Springer-Verlag, Berlin 1987. DOI 10.1007/978-3-642-84108-8 | MR 2340254
[7] Canuto, C., Hussaini, M. Y., Quarteroni, A., Zang, T. A.: Spectral Methods: Fundamentals in Single Domains. Springer-Verlag, Berlin 2006. MR 2223552
[8] Cristiani, E., Martinon, P.: Initialization of the shooting method via the Hamilton-Jacobi-Bellman approach. J. Optim. Theory Appl. 146 (2010), 321-346. DOI 10.1007/s10957-010-9649-6 | MR 2679665
[9] Dai, R., Jr, J. Cochran: Wavelet collocation method for optimal control problems. J. Optim. Theory Appl. 143 (2009), 265–278. DOI 10.1007/s10957-009-9565-9 | MR 2545952
[10] Elnagar, G., Kazemi, M. A., Razzaghi, M.: The pseudospectral Legendre method for discretizing optimal control problems. IEEE Trans. Automat. Control 40 (1995), 1793-1796. DOI 10.1109/9.467672 | MR 1354521
[11] Fahroo, F., Ross, I. M.: Direct trajectory optimization by a Chebyshev pseudospectral method. J. Guid. Control Dynam. 25 (2002), 160-166. DOI 10.2514/2.4862
[12] Foroozandeh, Z., Shamsi, M., Azhmyakov, V., Shafiee, M.: A modified pseudospectral method for solving trajectory optimization problems with singular arc. Math. Methods Appl. Sci. 40 (2017), 1783-1793. DOI 10.1002/mma.4097 | MR 3622433
[13] Funaro, D.: Polynomial Approximation of Differential Equations. Springer-Verlag, Berlin 1992. DOI 10.1007/978-3-540-46783-0 | MR 1176949
[14] Hanert, E., Piret, C.: A Chebyshev pseudospectral method to solve the space-time tempered fractional diffusion equation. SIAM J. Scientif. Comput. 36 (2014), A1797-A1812. DOI 10.1137/130927292 | MR 3246904
[15] Huang, J., Lin, C. F.: Numerical approach to computing nonlinear $ H_\infty $ control laws. J. Guid. Control Dynam. 18 (1995), 989-994. DOI 10.2514/3.21495
[16] Huang, C. S., Wang, S., Chen, C. S., Li, Z. C.: A radial basis collocation method for Hamilton-Jacobi-Bellman equations. Automatica 42 (2006), 2201-2207. DOI 10.1016/j.automatica.2006.07.013 | MR 2259164
[17] Kang, W., Bedrossian, N.: Pseudospectral optimal control theory makes debut flight, Saves {NASA} 1m in Under Three Hours. SIAM News 40 (2007).
[18] Kang, W., Gong, Q., Ross, I. M., Fahroo, F.: On the convergence of nonlinear optimal control using pseudospectral methods for feedback linearizable systems. Int. J. Robust Nonlin. 17 (2007), 1251-1277. DOI 10.1002/rnc.1166 | MR 2354643
[19] Kirk, D. E.: Optimal Control Therory: An Introduction. Prentice-Hall, New Jersey 1970.
[20] Kleinman, D.: On an iterative technique for Riccati equation computations. IEEE Trans. Automat. Control 13 (1968), 114-115. DOI 10.1109/tac.1968.1098829
[21] Lancaster, P., Rodman, L.: Algebraic Riccati Equations. Clarendon, Wotton-under-Edge 1995. MR 1367089
[22] Lewis, F. L., Syrmos, V. L.: Optimal Control. John Wiley, New York 1995. MR 0833285
[23] Liberzon, D.: Calculus of Variations and Optimal Control Theory. Princeton University Press 2012. MR 2895149
[24] Nagy, Z. K., Braatz, R D.: Open-loop and closed-loop robust optimal control of batch processes using distributional and worst-case analysis. J. Process Control. 14 (2004), 411-422. DOI 10.1016/j.jprocont.2003.07.004
[25] Nik, H. S., Shateyi, S.: Application of optimal HAM for finding feedback control of optimal control problems. Math. Probl. Eng. 2013 (2013), 1-10. DOI 10.1155/2013/914741 | MR 3043723
[26] Orszag, S. A.: Comparison of pseudospectral and spectral approximation. Stud. Appl. Math. 51 (1972), 253-259. DOI 10.1002/sapm1972513253
[27] Parand, K., Rezaei, A. R., Ghaderi, S. M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Comm. Nonlinear Sci. Numer. Simul. 16 (2011), 274-283. DOI 10.1016/j.cnsns.2010.03.022 | MR 2679180
[28] Rakhshan, S. A., Effati, S., Kamyad, A. Vahidian: Solving a class of fractional optimal control problems by the Hamilton-Jacobi-Bellman equation. J. Vib. Control 1 (2016), 1-16. MR 3785617
[29] Reisinger, C., Forsyth, P. A.: Piecewise constant policy approximations to Hamilton-Jacobi-Bellman equations. Appl. Numer. Math. 103 (2016), 27-47. DOI 10.1016/j.apnum.2016.01.001 | MR 3458022
[30] Ross, I. M., Fahroo, F.: Pseudospectral knotting methods for solving nonsmooth optimal control problems. J. Guid. Control Dynam. 27 (2004), 397-405. DOI 10.2514/1.3426
[31] Sabeh, Z., Shamsi, M., Dehghan, M.: Distributed optimal control of the viscous Burgers equation via a Legendre pseudo-spectral approach.
[32] Taher, A. H. Saleh, Malek, A., Momeni-Masuleh, S. H.: Chebyshev differentiation matrices for efficient computation of the eigenvalues of fourth-order Sturm-Liouville problems. Appl. Math. Model. 37 (2013), 4634-4642. DOI 10.1016/j.apm.2012.09.062 | MR 3020599
[33] Schafer, R. D.: An Introduction to Nonassociative Algebras. Stillwater, Oklahoma 1969.
[34] Shamsi, M.: A modified pseudospectral scheme for accurate solution of Bang-Bang optimal control problems. Optimal Control Appl. Methods 32 (2010), 668-680. DOI 10.1002/oca.967 | MR 2871837
[35] Shamsi, M., Dehghan, M.: Determination of a control function in three-dimensional parabolic equations by Legendre pseudospectral method. Numer. Methods Partial Differential Equations 28 (2012), 74-93. DOI 10.1002/num.20608 | MR 2864659
[36] Swaidan, W., Hussin, A.: Feedback control method using Haar wavelet operational matrices for solving optimal control problems. Abs. Appl. Anal. 2013 (2013), 1-8. DOI 10.1155/2013/240352 | MR 3093751
[37] Trefethen, L. N.: Spectral Methods in Matlab. SIAM, Philadelphia 2000. DOI 10.1137/1.9780898719598 | MR 1776072
[38] Vlassenbroeck, J., Doreen, R. Van: A Chebyshev technique for solving nonlinear optimal control problems. IEEE Trans. Automat. Control 33 (1988), 333-340. DOI 10.1109/9.192187 | MR 0931197
[39] Wang, S., Gao, F., Teo, K. L.: An upwind finite-difference method for the approximation of viscosity solutions to Hamilton-Jacobi-Bellman equations. IMA J. Math. Control I. 17 (2000), 167-178. DOI 10.1093/imamci/17.2.167 | MR 1769274
[40] Yan, Zh., Wang, J.: Model predictive control of nonlinear systems with unmodeled dynamics based on feedforward and recurrent neural networks. IEEE Trans. Ind. Informat. 8 (2012), 746-756. DOI 10.1109/tii.2012.2205582
[41] Yershov, D. S., Frazzoli, E.: Asymptotically optimal feedback planning using a numerical Hamilton-Jacobi-Bellman solver and an adaptive mesh refinement. Int. J. Robot. Res. 35 (2016), 565-584. DOI 10.1177/0278364915602958
[42] Yong, J., Zhou, X. Y.: Stochastic Controls: Hamiltonian Systems and HJB Equations. Springer-Verlag, New York 1999. MR 1696772
Partner of
EuDML logo